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ABSTRACT 

 

Ten parent corn lines, comprised of four mutants (dull sugary2, amylose-extender sugary2, 

amylose-extender dull, and an amylose-extender (ae) with introgressed Guatemalan (GUAT) 

germplasm) and six lines with introgressed exotic germplasm backgrounds were crossed with 

each other to create 20 progeny crosses.  The parents and progeny crosses were characterized 

for % resistant starch (RS), gelatinization, and retrogradation characteristics.  The RS was 

measured from the extracted starch targeting the measurement of RS 2, which is present in 

ungelatinized starch, by using the Megazyme Resistant Starch kit.  The RS values from the 

10 parent lines varied from 18.3 % to 52.2 %, and the values from the 20 progeny crosses 

ranged from 16.6 to 34.0 %.  Greater RS in parents was correlated to greater RS in the 

progeny crosses (r = 0.63, P ≤ 0.05).  The Differential Scanning Calorimeter (DSC) was used 

to measure the gelatinization and retrogradation characteristics of the starches.  Peak 

gelatinization temperature and change in enthalpy were positively correlated to % RS (r = 

0.65 and r = 0.67, P ≤ 0.05); however, the retrogradation parameters, a measure of RS 3, did 

not correlate with % RS (RS 2 type).  All parents, with the exception of Guat ae, and progeny 

crosses had % RS greater than that of commercial cornstarch (8.9%), but lower than that of a 

high-amylose standard (50 % apparent amylose, 40.2 % RS).  The % RS and onset 

temperature increased with the addition of the ae gene.   

Tortillas are a simple food system made from whole corn that has been nixtamalized.  A 

high-amylose, non-floury corn type with 55.2% RS, a floury corn type with 1% RS, and a 1:1 

blend with 28.2% RS were used to make traditional tortillas.  Whole corn was nixtamalized 
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and ground to make masa.  The masa was evaluated for pasting properties on a Rapid-Visco 

Analyser.  The high-amylose masa slurry gelatinized only slightly, as noted by a small 

change in peak viscosity during the 95° C heat treatment.  The floury masa had the greatest 

peak viscosity, whereas the blend was intermediate in value.  Tortillas were evaluated by an 

11-member sensory panel who evaluated the textural attributes of grittiness, moistness, 

chewiness, rollability, and tearability.  The floury tortillas were chewier, more rollable, and 

grittier than the high-amylose tortillas.  The blend tortillas were intermediate in most 

parameters.  The cutting force of the high-amylose tortillas, as measured by a texture 

analyzer, was very low, whereas the blend and floury tortillas required more force.  

Chewiness was correlated to rollability (r = 0.99, P ≤ 0.05).  The RS percentage was 

correlated to rollability (r = 0.99), and cutting force (r = 0.99).  The floury and blend tortillas 

had a firm texture that would be expected when eating a tortilla with a filling.  The high-

amylose tortillas fell apart with very little force, and would not roll around a filling, making 

them unsuitable for this use.  Although the high-amylose tortillas had increased dietary fiber 

in the form of RS, it had very poor textural attributes.  The blend tortillas retained enough of 

the textural properties of the floury tortilla to make it a suitable product. Understanding the 

impact of RS on the gelatinization characteristics of starches and the texture of food products 

will help the food industry understand its impact on food processing, especially processing 

involving heating.  
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GENERAL INTRODUCTION 

Introduction 

Starch is important to the diet, providing the bulk of the calories a person needs daily.  Starch 

can be broken up into a digestible fraction, and a non-digestible fraction.  The non-digestible 

fraction is called dietary fiber (DF), and includes resistant starch (RS).  Four types of RS 

exist.  The RS 1 is made resistant by the surrounding food matrix, RS 2 is present in 

ungelatinized, raw starches, RS 3 is created by retrogradation, and RS 4 is produced through 

chemical alteration (Englyst et al., 1996).  All behave differently during processing, making 

their measurement difficult.  There are several options available for RS measurement, none 

of which is perfect.  The gelatinization characteristics of RS can also be examined by a 

Differential Scanning Calorimeter (DSC). 

Many grains, including corn, contain RS.  The corn kernel has several anatomical parts that 

contribute to the proximate composition.  The endosperm of the corn kernel contains starch 

and proteins.  The starch is the main source of RS inside a corn kernel, while the pericarp 

contributes to DF.  Corn starch is a commonly utilized product in the food industry.  Its 

properties can be modified with traditional plant breeding by using major (naturally 

occurring mutant genes), or minor (modifying genes) genetic factors.  Exotic corn lines may 

provide unusual traits of interest through modifying genes, including increased RS, for 

functional foods.  High-amylose corn lines provide higher amounts of RS 2 than normal corn 

through a major (mutant) gene; thus crossing these two corn types may increase the RS, 

provide unique materials for food use, and maintain cooking properties better than high-

amylose corn lines used alone.  
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Consumption of RS provides many health benefits because it functions as a prebiotic, a 

fermentable substrate for beneficial gut flora.  Fermentation produces short-chain fatty acids 

which alter the colon environment, and provide health-protective effects.  Among other 

things, short-chain fatty acids reduce intestinal pH, increase arteriole blood flow, and may 

protect against colon cancer by regulating cell turnover.   

Addition of RS to the diet can aid in weight control because RS promotes satiety, and has 

little effect on blood sugar after eating.  An ideal food product for RS is the tortilla because it 

is a simple food system that has been targeted for nutritional improvement by nutritionists 

and the Mexican government.  Tortillas are commonly eaten around the world, but are a 

staple food in Latin America.  Tortillas provide the bulk of the calories in low income parts 

of the world. 

While tortillas have been made for centuries in the household, industry has begun to produce 

them.  These mass produced tortillas differ in texture and, in many ways, are inferior to the 

traditionally made product.  The corn used in tortillas is treated by a process known as 

nixtimalization, which involves cooking corn in lime solution over heat.  To improve the 

quality of the product, many steps in tortilla processing have been suggested for quality 

improvements, such as cooking time, steeping time, lime concentration, and storage 

conditions. 

Storage conditions can increase the RS present by forming RS 3 during retrogradation.  

Tortillas stale rapidly and therefore retrograde quickly.  While stale tortillas are higher in RS 

they also are less desirable because of textural defects.  Industry uses anti staling agents to 

give their tortillas a longer shelf life, but this also decreases the RS formation.  Much work 
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has focused on examining the textural aspects of tortillas by using instrumental analyses, but 

there have been few studies using human sensory panels.  A sensory panel provides valuable 

information on what affects overall opinions on a food product.  Humans can be better 

experts on food than instruments and can detect smaller differences in some cases.  The main 

drivers for purchase of commercial tortillas have been identified, and some attempts at 

objective texture methods have been made including rollability, extensibility, and bending 

measured by a texture analyzer.  The understanding of factors impacting tortilla texture could 

be enhanced by more sensory work with human subjects.  

Thesis Organization 

This thesis contains a review of literature, and two manuscripts reporting the findings of the 

research accomplished during my studies.  The first paper titled, “Thermal Characteristics of 

Starch From Corn Mutants With High Amounts of Resistant Starch” is followed by the 

second paper, “Resistant Starch Effects on Tortilla Texture”.  Both papers are formatted for 

publication in Cereal Chemistry. 

Review of Literature 

Starch 

Starch is the carbohydrate storage product of plants.  Starch is found in cereals (A type 

starch), tubers (B type starch), and legumes (a mix of A and B type called C type starch).  

Starch is deposited in insoluble granules.  Inside the granule are linear amylose (linked only 

by alpha 1,4 glycosidic bonds), and the branched amylopectin (linked with alpha 1,4 chains, 

and alpha 1,6 branches). The fine structure of amylopectin organizes the internal structure of 
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the starch granule (Zhang et al., 2006b).  Starch granules are stable because they are very 

compact. Native, raw granules are resistant to hydrolysis because enzymes cannot access 

linkages (Haralampu, 2000).    

The addition of water and heat allows the granule to become disorganized.  In the process 

known as gelatinization, the granule swells, and the amylose seeps from the granule.  During 

gelatinization, foods containing starch become softer in texture, making them more palatable.  

After gelatinization, digestive enzymes can easily access the glycosidic bonds.     

The degree of polymerization (DP) is the number of monosaccharide units a starch source 

contains.  The designation can be used to separate carbohydrates into general groups: sugars, 

or monosaccharides (DP 1) and disaccharides (DP 2); oligosaccharides (DP 3-10), and 

polysaccharides (DP 10+).  Sugars, except for lactose in lactose-intolerant individuals, are 

easily absorbed, and increase the human insulin response in the blood.  Oligosaccharides, 

such as malto-oligoasccharides, are digestible, but other types, such as fructooligosaccharides 

and galactooligosacchrides, are poorly digested, and can be fermented in the large intestine.  

Polysaccharides may be digestible (starch) or indigestible (resistant starch and non-starch 

polysaccharides).   

Digestion begins when enzymes attack the pores on the surface of the granule.  As digestion 

continues, the pores enlarge, and digestion continues into the granule center, creating 

channels (Zhang et al., 2006a). Starch is digested mainly by α-amylase, glucoamylase, and 

sucrose-isomaltase in the small intestine, which results in free glucose.  The α-amylase 

determines the rate of digestion.  Glucoamylase acts on the intermediates from α-amylase 
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digestion, clearing them to keep the reaction uninhibited (Zhang et al., 2006a).  The glucose 

is absorbed and used for energy.  

The rate of digestion can impact the calorie content of starch products.  If a starch source is 

not fully digested by the time it reaches the large intestine, it will become a fermentable 

carbohydrate for natural flora.  The actual rate of polysaccharide digestion and absorption is 

based on the rate of stomach emptying, and the rate of diffusion of released sugars from the 

food bolus, which depends on the carbohydrate type, biological origin, and processing 

conditions (Englyst et al., 2007).  Rapidly digestible starch (RDS) is fully digested in 20 

minutes, and provides 4 kcal/g (Seifter et al., 2005).  Digestion completed between 20 and 

120 minutes is termed slowly digestible starch (SDS), and will provide partial calories to the 

diet.  Anything still in the large intestine after 120 minutes is termed resistant starch (RS), 

and further reduces the calories ingested (Englyst et al., 2003).   

The level of SDS is parabolically related to the weight ratio of short chains to long chains of 

amylopectin (Zhang et al., 2008).  Both amylose and amylopectin are present in SDS, but the 

amylopectin provides the majority of the molecules, as does cornstarch.  It is hypothesized 

that SDS characteristics come from the alternating crystalline and amorphous regions within 

the granule.  Amylose content or structure does not have an effect on SDS, but does affect 

RS content (Zhang et al., 2006b).  The slowed digestion is the result of amylopectin’s 

branches, because amyloglucosidase slows as it nears a branch location (Zhang et al., 2008).  

A greater proportion of high-branch-density amylopectin (many short chains with a lot of 

branching) increases the amount of SDS; this is accomplished by chemical modification 

(Zhang et al., 2008).  Because of the compact arrangement, the enzymes have difficulty 
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binding to the amylopectin chain at enough α-amylase binding sites to achieve rapid 

digestion.  While the time limit for SDS has been set at two hours, the rate is sustainable past 

this time, making the line between SDS and RS hazy (Zhang et al., 2006a).   

Undigestable starch types  

Undigestable starch is generally referred to as dietary fiber (DF). The term was first used in 

1953 by Hipsley (DeVries et al., 1999), and is defined by the American Association of Cereal 

Chemists (AACC) as, "the edible parts of plants or analogous carbohydrates that are resistant 

to digestion and absorption in the human small intestine with complete or partial 

fermentation in the large intestine. Dietary fiber includes polysaccharides, oligosaccharides, 

lignin, and associated plants substances. Dietary fibers promote beneficial physiological 

effects including laxation, and/or blood cholesterol attenuation, and/or blood glucose 

attenuation (AACC, 2001)."  A daily reference value (DRI) has not been set for DF; 

however, a recommended total DF intake has been set at 25g/day for adult females, and 

38g/day for adult males (American Dietetic Association, 2008), or 14 g/1000 cal consumed 

(United States Department of Agriculture, 2005).  Many Americans are not meeting these 

recommendations. 

There are multiple sources of DF, including fruits, vegetables, and whole grains.  Examples 

include lignin, cellulose, polysaccharides, and oligosaccharides, all of which are complex, 

long-chain carbohydrates not fully digested by human digestive enzymes.  The measurement 

of DF has evolved from the initial method of separating fiber into neutral detergent fiber and 

acid detergent fiber.  This method underestimated many components we now recognize as 
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fiber (Robertson and Horvath, 1993).  This was corrected with the total dietary fiber method 

currently used that includes almost all fiber components (AOAC 985.29/AACC 32-05). 

Whole grains are a good source of DF, and are defined by the AACC International Board of 

Directors (1999) as, “consist[ing] of the intact, ground, cracked, or flaked caryopsis, whose 

principal anatomical components—the starchy endosperm, germ and bran—are present in the 

same relative proportions as they exist in the intact caryopsis.”   Whole grains are beneficial 

not only because they are high in DF, but also because they contain phytosterols and folates 

(Harris and Smith, 2006).  Phytosterols lower cholesterol, and reduce risk of heart disease 

(Ostlund et al., 2003).  Folate is important for cell growth, DNA synthesis, prevention of 

anemia, and prevention of neural tube birth defects (Gregory, 2004).   

Whole grains are not common to the Western diet; refined flours and simple sugars are 

preferred.  Milling removes much of the DF components (bran) leaving only the starchy 

endosperm which is higher in energy, gives a smoother texture, and blander taste.  Refined 

flour is also more shelf stable than whole-wheat flour because the germ has been removed 

making it more oxidatively stable.  The 2005 Dietary Guidelines for Americans suggest that 

men and woman consume whole grains for half of their total grain intake a day (U.S. 

Department of Agriculture, 2005).  In recent years, more attention has been paid to 

consumption of whole grains, but not all plant sources are equal in terms of DF.  Corn has an 

approximate 7.3 g of DF per 100 g of whole corn per 100-g serving (Salovaara et al., 2007).  

It is possible to separate DF into soluble and insoluble fractions.  Soluble fiber increases the 

viscosity of the digestive mucosa, which slows the enzyme/food interaction, and therefore 

slows energy release (Young et al., 2005).  Incorporation of DF into the diet allows a person 
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to eat more but consume less energy, which is of great interest for overweight and obese 

individuals.   

Soluble fibers reach the proximal colon where they are fermented.  Little soluble fiber is left 

undigested to be expelled in the feces.  Soluble fibers have more opportunities for food use 

because they will mix into solution, creating less disruption to the food matrix. Examples are 

pectins, gums, mucilages, and some hemicelluloses.   

Insoluble fibers include celluloses, lignin, most hemicelluloses, and RS.  These pass farther 

through the colon, to the distal colon, and are slowly fermented.  Their indigestibility comes 

mainly from the human lack of necessary enzymes, or complex structures that prevents 

enzyme access.  They are expelled in the feces, and are a better bulking agent than soluble 

fibers (Young et al., 2005).   

A newer area of DF research is that of resistant starch (RS), which is made of the same 

glycosidic bonds as digestible starch, but because of various factors, is inaccessible to 

enzymes, and is only partly digested.  Some of the functional properties of refined flour may 

be retained in flours containing some RS, such as smooth texture and bland taste.  These 

properties help high-RS products overcome many of the perceived negatives of DF held by 

consumers because it tastes like refined grains, but is still low in energy value.   

Resistant starch 

The proper way to measure DF is to use the AOAC 985.29/AACC 32-05, but this method 

does not encompass RS in its measurement of DF.  Englyst et al. (1996) coined the term RS 

after observing that not all components that are resistant to digestion are measured in DF.  
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They created a classification that divided RS into four groups: RS 1 is physically inaccessible 

to digestive enzymes because of the surrounding food matrix; RS 2 is present in raw, 

ungelatinized cereal grains; RS 3 is created by retrogradation; and RS 4 is created by 

chemical means (Englyst, 1996).  All RS types differ in their response to heat treatment, 

processing, and storage, making them vary in their ideal applications.   

The RS 1 content of a food may be altered by various processing steps including grinding, 

mixing, heating, and storage.  Any physical disruption has the greatest effects on RS 1 

because the physical surroundings are what impart resistance. It is very hard to measure RS 1 

because measurement requires extraction and removal of the surrounding material, which 

may affect the structures that made the starch inaccessible in the first place.  This type of RS 

has potential in many food uses, but RS degradation and formation need to be tracked at each 

stage of production to determine if the end product has appreciable levels of RS left for 

consumption.   

Humans do not normally consume RS 2; most starch is first gelatinized, with a few 

exceptions (raw bananas and potatoes).  This type of RS has potential as a food ingredient, 

but new products may need to be developed to truly capitalize on RS 2’s ability to reduce 

calories. This product would incorporate ungelatinized starch, without the side effects of poor 

flavor and texture.  The percentage of RS 2 is greater in high amylose starches, a portion of 

which is retained upon processing.  There is one RS 2 flour that is commercially available, 

Hi-maize sold by National Starch Company. 

Incorporation of RS 3 into food products is also possible.  Retrogradation can be hastened by 

repeated heating and cooling cycles in an autoclave.  Besides the addition of a pre-made RS 3 
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flour, RS 3 can be created upon storage.  Most processed foods go through some amount of 

storage between the processing facilities and home use; the exact storage period can be hard 

to estimate.  Storage studies to determine amount of retrogradation and RS formation over 

time should be done on high carbohydrate foods to see if RS is being made.  Commercial 

sources of RS 3 include NOVELOSE 330 (National Starch Company) and CrystaLean (Opta 

Food Ingredients, Inc.).   

The only type of RS not naturally present in foods is RS 4, which is made in the laboratory 

by various methods.  It is possible to attach lipids to the starch.  These large lipids groups 

block digestive enzymes.  Other methods of RS 4 creation include starch that has been 

etherized, esterified, or cross-bonded (Czuchajowski et al., 1991, and Xie et al., 2006).   

 

Resistant starch measurement 

The measurement of RS is difficult in many ways.  Only RS 2 or RS 3 is measured by any 

one method (Englyst et al., 2007).  The current methods for RS are the Englyst method, the 

Prosky method (total dietary fiber method, AOAC 991.43), and the McCleary 

method/Megazyme RS Kit (AOAC 2002.02, AACC method 32-40).  All methods give 

different RS values because they measure different DF components.  The Englyst method 

measures plant cell wall non-starch polysaccharide, whereas the Prosky method measures the 

non-starch polysaccharide and lignin (Kontraszti et al., 1999).  The Prosky method is best 

used for traditional DF components.  The McCleary method is an extension of the Englyst 

method that attempts to mimic the human digestive tract.   
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The McCleary method involves incubating starch with pancreatic α-amylase and 

amylosglucosidase, at 37° C for 16 hrs, in a shaking water bath. The two enzymes hydrolyze 

the RDS and SDS to free glucose.  The reaction ends when 100% ethanol is added, and then 

is washed with 50% ethanol twice.  The RS is retained by centrifugation, and the supernatant, 

containing the free glucose, is discarded.  The RS is then dissolved in 2 M potassium 

hydroxide (KOH) with stirring in an ice water bath.  Once the solution is neutralized 

amyloglucosidase is added, and the RS is converted to free glucose.  This glucose is 

measured by the glucose oxidase/peroxidase reagent (GOPOD), which turns pink in the 

presence of glucose.  The pink color is then measured on a spectrophotometer at 510 nm.  

No method accurately measures RS1 because the methods do not measure the starch as eaten.  

All methods require an extraction step which alters the surrounding matrix.  The McCleary 

method accurately measures RS 2, but not RS 3.  The majority of RS 3 is destroyed by 

gelatinization, and is underreported by the Prosky method.  When 17 foods were measured 

by the Englyst and Prosky methods, the Prosky method was 98% higher in 16 of the foods 

(Kontraszti et al., 1999).  

The McCleary/Megazyme method was accepted as an AACC/AOAC method (McCleary and 

Monaghan, 2002).  This method is best suited for large numbers of samples, and requires a 

smaller sample size than the other methods.  The packaging of the enzymes into a kit is also 

helpful to industry.  Many other methods have been proposed to measure RS, including a 

method including chewing (Akerberg et al., 1998, and Saura-Calixto, 1993).  Some papers 

have cited difficulties in accounting for differences between in vitro and in vivo assays 

(Danjo et al., 2003, Bauer et al., 2003, and Muir et al., 1993).   
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Differential scanning calorimetry 

Gelatinization and retrogradation characteristics of starch provide valuable information 

regarding the characteristics of starches from new mutants.  A starch-water slurry is heated 

by a Differential Scanning Calorimeter (DSC), and various parameters can be measured.  

Starch must first be extracted because other dietary components, such as proteins and lipids, 

can alter the output (Yamin, et al., 1997).  Heating to 180° C ensures even high-amylose 

starches are fully gelatinized.  Gelatinization creates a curve that reflects the change in 

enthalpy (∆H) of the starch.  The point of inflection is the onset temperature, the highest 

point is the peak temperature, and the return to baseline is the end point temperature (Figure 

1).  Measuring the area under the curve provides the ∆H, or the change in enthalpy.  

Retrogradation can be measured by reheating the starch-water slurry that has been stored for 

7 days at 4° C.  The amylose and amylopectin molecules that have recrystallized will melt 

again.  The peak for retrogradation will be smaller, and occur at a lower temperature than the 

original analysis.     

Stevens and Elton first used the DSC for starch gelatinization in 1971.  The amylose-

amylopectin ratio affects DSC characteristics, with a higher amylopectin content narrowing 

the gelatinization peak (Krueger et al., 1987).  Heating starches on the DSC has shown that 

tropical conditions can narrow the gelatinization temperature range when compared to the 

same corn grown under temperate conditions, (White et al., 1991). 

Rapid Visco-Analyser 
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The Rapid Visco-Analyser (RVA), a cooking and stirring viscometer, measures the pasting 

properties of starch (Tziotis et al., 2005).  Pasting occurs after gelatinization, when starch 

swells and becomes thick.  Pasting is the basis of the preparation of many food products, 

such as pudding.  The RVA is capable of measuring parameters such as pasting temperature, 

peak viscosity, hot paste viscosity, final viscosity, breakdown, and setback (Seetharaman et 

al., 2001).  Breakdown is the difference between peak viscosity and hot paste viscosity.  

Setback is the difference between the hot past viscosity and the final viscosity.   

Texture Analyzer (TA.XT2) 

A texture analyzer provides an instrumental way to analyze textural properties.  One of the 

most commonly used instruments is a TA.XT2, made by Texture Technologies (Scarsdale, 

New York).  The advantage of a TA.XT2 is that it comes with many different attachments 

that can be used for different food products.   The TA.XT2 is often used to measure gel 

strength.  It is possible to measure many different attributes with a TA.XT2 including 

hardness, chewiness, and adhesiveness (Sahai et al., 2001).  Hardness is defined as the peak 

force of the first peak.   

Corn kernel composition 

Many different grains and legumes contain RS.  Zea Mays L., commonly known in the 

United States as corn, or maize, is one of the main agricultural commodities grown around 

the world, with many human and animal feed uses, and industrial applications, including 

recent use in biofuels.  Corn is a staple food product in many cultures.  Corn is a good source 
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of calories, and forms the bulk of the diet for many people in Central and South America.  

The starch, protein, and lipid fractions of the kernel have been characterized.  

The edible portion of the corn plant is called the kernel.  The average hybrid ear has about 

800 kernels (Watson, 2003).  The corn kernel is a caryopsis, a single seeded fruit, containing 

an embryo, and all components required for growth and development (Watson, 2003).  From 

the outside inwards, it is made up of the pericarp, aleurone, hilar layer, endosperm, and germ.  

Nixtamalized products are made from whole corn, and the texture is dependent upon all 

components being present, either in whole or part.  But many corn products are milled to 

remove the germ, making the resulting flour more oxidatively stable. 

The outermost kernel layer, the pericarp, is actually five layers thick.  The pericarp is about 

five percent of the dry weight of the kernel, but makes up 51% of the dietary fiber content for 

the kernel (Table 1).  The epidermis is the outermost, waxy cuticle layer, which helps retain 

moisture inside the kernel.  All layers of the pericarp, with the exception of the seed coat, are 

dead cells.  The seed coat, the inner most pericarp layer, adheres to the aleurone layer, and 

may have semipermeable properties.   

The aleurone layer is just a single cell layer thick.  While no starch is present, protein and oil 

bodies are.  It is thought that this layer must be ground in order for digestive enzymes to 

attack the encased endosperm. 

The hilar layer is underneath the tip cap, or pedicel, the portion of the kernel that is attached 

to the corn cob.  The tip cap is made mostly of fibrous material.  The hilar layer is used as an 

indicator of physiological maturity when it turns black.  The black hilar layer has little effect 
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on end products except in white corn.  The hilar layer can show up as specks in white 

tortillas, and is carefully removed by sifting.   

The endosperm contains the bulk of the starch and protein of the kernel.  The endosperm 

fraction is the majority of the kernel, making up 82-84% of the kernel dry weight, and is 86-

89% starch by weight (Watson, 2003).  The endosperm contains little to no traditional dietary 

fiber (hemicelluloses, cellulose, or lignin) (Table 1).  The endosperm is made up of starch 

embedded in a continuous protein matrix, in the ratio of approximately 87% starch and 8% 

protein (Table 2).  Moving from the outside of the endosperm towards the center of the 

kernel, more starch and less protein material are found.  The starch is synthesized by 

amyloplasts, and deposited in granules because of this the granules will have some associated 

lipids on the surface, including those of the amyloplast membrane.  Granules also contain 

internal free fatty acids and lysophospholipids (Watson, 2003). 

The protein components in the protein bodies are mainly the four zeins (α, β, γ, and δ ).  The 

α- zein, comprising 70% of all zein proteins, is low in lysine but high in alanine and leucine 

(Lawton and Wilson, 2003).  The β-zein contributes 5% of the total zein content, and lacks 

lysine and tryptophan.  The γ-zein contributes 20% of the total zein, has no lysine or 

tryptophan, but is rich in proline and cysteine.  The γ-zein is located on the outside of the 

protein bodies.  Finally, the δ-zeins, making up less than 5% of the total zeins, are not present 

in all varieties, and are rich in methionine.  Albumins and globulins exist in the aleurone, 

pericarp, and germ.  Prolamins and glutelins make up the storage proteins, and are found in 

the endosperm (Lawton and Wilson, 2003).  Protein concentration is dependent upon soil 

nitrogen, which is variable from location to location, and year to year (Watson, 2003).  
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Overall, corn protein is considered an inferior protein because it is deficient in the essential 

amino acids lysine and tryptophan.  To make a complete protein corn should be combined 

with other protein sources high in lysine and tryphtophan. 

The germ contains the immature embryo, and the bulk of the oil and the minerals.  The germ 

provides 10-12% of the kernel dry weight, and 81-85% of total kernel oil, mostly in the 

triglyceride form (Watson, 2003).  Within the germ is the scutellum, which is the food-

storage organ of the germ.  The oil is deposited in oil bodies, or sphereosomes, that are 

membrane bound.  The oil is encased in a protein with polar ends facing out, and the 

hydrophobic ends pointing in.  These bodies are very stable because of the presence of 

phosphotidylcholine and oleosins in the membrane.  The germ also contains a small amount 

of starch and protein (Table 2).  The proteins are largely enzymes that digest the starch and 

protein of the kernel in the event of germination (Watson, 2003). 

Corn provides several essential vitamins and minerals. Most corn varieties are yellow 

because of the carotenoid pigment, 95-97% of which is contained in the endosperm protein 

(Watson, 2003).  β-carotene has a 60% vitamin A conversion rate in the human body.  It is 

susceptible to degradation when exposed to light and oxygen, thus, the concentration 

decreases during storage.  Xanthophylls, such as lutein and zeaxanthin, are also present in the 

germ, and are more stable upon storage.  Vitamin E (α-tocophorol), along with 78% of the 

minerals in corn, is found in the germ.  The most abundant mineral is phosphorus, with 78% 

in the phytin form which is important for plant storage, but unavailable for human 

metabolism.  Potassium is also present at an average of 0.37% (Watson, 2003).    

Dent corn 
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Dent corn makes up the majority of all corn grown in the United States, with 98% being the 

yellow endosperm variety (no. 2 yellow) (Darrah et al., 2003).  The endosperm of dent corn 

is composed of two types: the horny endosperm around the outside, and a soft, floury 

endosperm toward the middle of the kernel.  When the kernels are dried a dent is formed on 

the top of the kernel giving dent corn its name.  The more intense the yellow color the more 

vitamin A content.   

Floury corn 

Floury corn is common to Latin American cultures.  The endosperm is soft, and there is 

almost no horny endosperm.  It is easily ground, and is used for traditional foods like 

tortillas, humitas, and quimbolitas.  When dried no denting occurs.  Floury corn is not 

commonly grown in the US, but is grown in South America (Darrah et al., 2003).  Floury 

corn has a low gelatinization onset temperature of 60.8° C and a wide range of 13.5° C 

(Seetharaman et al., 2001).  When the pasting properties of a floury endosperm type were 

compared to dent, flint, semident, and semiflint the floury was significantly different from 

the other endosperm types.  The floury endosperm had the highest pasting onset temperature 

and the lowest peak viscosity, breakdown, and setback (Seetharaman et al., 2001).  The 

specialized corn type opaque-2 is of the floury type.  The opaque-2 corn variety has double 

the normal lysine and tryptophan content (Mertz et al., 1964). 

 

Corn starch 
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For food use, corn is often milled into corn starch, a product consisting of the endosperm 

without the germ and pericarp.  The starch fraction of normal corn starch is made up of 

approximately 75% amylopectin and 25% amylose.  Raw cornstarch is generally very low in 

RS, ranging from 0.7% (Themeier et al., 2005) to 6.9% (Zhang et al., 2006b).  Corn starch 

gelatinization and gelation properties can be altered and enhanced through traditional corn 

breeding by focusing on particular gene expression.  Typical starches hydrate between 40 and 

120° C (Haralampu, 2000), and corn starch gels are thermally reversible at 100° C (Klucinec 

and Thompson, 1999).  The amylose to amylopectin ratio affects the degree to which a starch 

gelatinizes (Zhang et al., 2008). 

High-amylose starch 

The amylose extender (ae) gene, first studied by R.P. Bear in 1950, provides increased 

amylose, with typical values ranging from 50 to 70%.  Because it is a recessive gene, it must 

be grown in isolation so that dominant genes do not contaminate the plot by accidental cross-

pollination. The amylose content is correlated to the RS present (Themeier et al., 2005, and 

Shu et al., 2007).  When cereal starches (including corn starch) have less than 34% amylose 

the RS levels are very low, less than 1% according to the McCleary method (Themeier et al., 

2005).  These low RS starches came from A-type starches, such as du and su2 (Tziotis et al., 

2005).  B-type starches, including ae, exhibit more RS (Tziotis et al., 2005).  Corn starch 

with 70% apparent amylose resulted in 54.4% RS (Themeier et al., 2005).    

High-amylose starches provide high amounts of RS, because when the amount of amylose is 

increased the individual chains of amylose lengthen to DP’s greater than 30 (Klucinec and 

Thompson, 1999).  Inside the starch granule these chains pack very tightly together.  This 
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packing can cause incomplete hydration, and therefore reduced swelling and gelatinization.  

Incomplete gelatinization creates areas that digestive enzymes are unable to reach, thereby 

imparting enzymatic resistance and slowing/reducing digestion.     

These long molecular chains of amylose also create ideal interactions for retrogradation and 

crystallization. Retrogradation is the thermodynamically reversible process by which a 

gelatinized starch cools, and amylose and amylopectin chains reform some internal structure 

held together with hydrogen bonds.  The branching of amylopectin complicates the complete 

recrystallization of amylose.  Amylose recrystallizes quickly, while branched chains force 

amylopectin to recrystallize more slowly (Zhang et al., 2008).   

In a laboratory setting retrogradation is measured after 7 days at 4° C, but retrogradation 

begins immediately upon cooling.  Over the 7 days RS increases until reaching a maximum 

at 7 days, whereas SDS reaches a maximum around 4 days and disappears after 7 days of 

storage as it is converted to RS, creating a bell shaped curve: RDS decreases as RS increases 

(Zhang et al., 2008).  Retrogradation affects the digestibility of starch in several ways.  

Digestibility is decreased because retrogradation forms B-type crystalline structures, which 

are resistant to enzyme actions (Zhang et al., 2006b).  Retrogradation of individual corn 

starch mutants will vary according to their amylose/amylopectin ratios (Zhang et al., 2008).   

Other recessive mutants 

The double mutants involved in the current study include: du su2, ae su2, ae du.  The single 

mutant Guat ae is also used.  Starch properties can be altered by genetic background and 

growing environment (Ji et al, 2005).  Different genotypes may have different responses to 
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the same environmental conditions (Ji et al., 2005).  While double mutants have not been 

extensively studied, single mutants have been more completely characterized.  Single mutant 

characteristics can influence double mutant characteristics.  Mutant genes can have 

substantial effects on kernel and starch granule development and morphology, and 

polysaccharide composition (Creech, 1968). 

The su2 mutant was first discovered in 1935 by Eyster.  It is more easily digestible by 

pancreatic α-amylase (Sandstedt et al, 1962), making it have low RS values, and low 

potential for RS formation.  While this makes it less desirable for low calorie foods, it is 

desirable for animal feed.   

The su2 gene lowers starch, and increases amylose by 10-15%.  The starch from the su2 

mutant also has altered gelatinization characteristics.  The starch onset temperature is lower 

than in normal corn (Pfahler et al, 1957, and Kramer et al., 1958).  Onset temperatures can be 

as much as 10° lower than normal, with a ∆H value of 7.7 J g-1, compared to normal having a 

∆H of 14 J g-1.  The su2 starches retrograde less than do normal starches (Campbell et al., 

1994). 

Pasting and viscosity temperatures are lower in su2 starches than in typical starch.  Pasting 

onset is delayed, no initial viscosity peak is exhibited, and there is a low final viscosity after 

cooling (Campbell et al, 1994).  The gels formed by su2 are much weaker gels than those 

formed by normal starch (Campbell et al., 1994).  The granules have lowered birefringence 

(Pfahler et al, 1957 and Kramer et al, 1958, Inouchi et al, 1984).   
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The single mutants ae, du and su2, as well as the double mutants ae du, and ae su2 

endosperms have an apparent amylose content higher than that of normal maize starch 

(Shannon and Garwood, 1984).  The du and ae are similar in that they have higher pasting 

temperatures, lower peak viscosity, and a lower breakdown than normal starch.  The du1 

gene affects soluble starch synthase and branching enzyme IIa activity, while the ae mutation 

results in loss of starch synthase II (Gao et al., 1998).  The ae starches contain branched 

molecules that have a higher proportion of longer chains (DP>30) than the amylopectin of 

common corn starch (Takdea at al., 1993).   

The starch from corn having the du 1 gene exhibits higher pasting onset temperature, lower 

viscosity, and relatively high amylose, which may cause a higher pasting temperature 

resulting from the increased bonding of amylose within the granule (Wang et al., 1992).  The 

increase in amylose will vary depending on the genetic background (Shannon and Garwood, 

1984).  The du1 gelatinization characteristics include a relatively low retrogradation ∆H 

value and low amount of retrogradation (percent retrogradation, Tziotis et al, 2005). 

Health benefits 

The Western diet is high in refined and processed grains, such as white bread, pasta, and 

white rice, all of which are low in RS.  Low-fiber diets have been associated with increased 

risk of obesity and obesity related illnesses: diabetes, anthrosclerosis, hypertension, and 

colon cancer (Brennan, 2005).  The health benefits of RS affect many areas of the body.  

The colon environment is positively affected by RS because RS functions as a prebiotic, a 

substance characterized by its ability to aid the proliferation of beneficial gut flora, such as 
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bifidobacteria (Nugent, 2005, and Brouns et al., 2002).  Probiotics colonize the host but vary 

in attachment strength and preventive effects on other toxic/pathogenic bacteria (Macfarlane 

and Cummings, 1999).  Probiotics aided by prebiotics have been beneficial in treating 

Campylobacter jejuni enteritis and C. difficile diarrhea.   Probiotics may have beneficial 

properties even when the bacteria are dead when eaten.  For example, dead and live bacteria 

can bind mutagenic pyrolsates making them antimutegenic.  Live cells can carry antigens to 

the coloncytes improving immune response.  Live cells also reduce the risk of irritable bowel 

syndrome (IBS), ulcerative colitis, and inflammatory bowel disease through the production 

of short-chain fatty acids (SCFA) (Macfarlane and Cummings, 1999). 

As RS is digested it passes through the human digestive tract undigested by the enzymes, and 

passes to the large intestine where it is fermented by the gut flora, producing SCFA, 

including acetate, propionate, and butyrate.  The production of SCFA is important to 

digestive health, but their production is hard to measure accurately because approximately 

95% of SCFA are absorbed into the body (Topping and Clifton, 2001).  The best way of 

measuring SCFA production in healthy humans is by measuring the excretion in feces, but 

this measure does not provide an accurate measure of production or absorption.  Fecal studies 

are best for measuring changes in SCFA based on different diets.  Another way of measuring 

SCFA is to measure the effluent of ileostomy patients, i.e., people who have had the large 

intestine removed either due to illness or injury.  Not surprisingly, these conditions may not 

approximate the true conditions of healthy individuals.   

Animal models have been used to better approximate human internal conditions but the 

perfect double of the human digestive track has not been found. Pigs and dogs seem to be the 
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best human substitutes, but rats are easier to work with (Topping and Clifton, 2001).  In vitro 

models are also used, but do not always correlate to the activity in in vivo human feeding 

studies.   

Mineral absorption is affected by SCFA depending on the model used and method of 

delivery.  Na+ and K+ are cotransported with uptake of SCFA in the colonocyte of the rat 

(Fleming et al., 1991).   Several studies have shown that SCFA can increase absorption of 

Ca2+ and Mg2+, including after dietary supplementation (Courdray et al., 1997), after rectal 

infusion (Trinidad et al., 1996), and in pigs (Bird et al., 2000).  However, phytate, sometimes 

associated with dietary fiber, can bind and complex with minerals (Persson et al., 1991).    

Some work has been done examining SCFA’s effect on blood vessels.  There is a  positive 

effect on colonic blood flow after addition of SCFA; the SCFA caused arterioles to dilate 

(Mortensen et al., 1991), which can be beneficial to post operative surgical patients.  The 

increased blood flow is thought to increase tissue oxygenation and nutrient uptake.  Local 

neurons, or chemoreceptors, are also affected by SCFA, causing smooth muscle to relax 

(Mortensen et al., 1991).  Feeding RS after surgery could help patients heal quicker.   

Being weak acids, SCFA can lower the digestive mucosa pH (Topping and Clifton, 2001).  

Lowering the pH of the lumin can prevent growth of pathogenic bacteria, including E. coli 

and Salmonella (Cherrington et al., 1991), and decrease active cholera disease and antibiotic-

induced diarrhea by inducing water uptake (Ramakrishna et al., 2000).  While pH changes 

have been observed in various models, the buffering of gut contents, or the mineral content 

present may dominate in vivo (Topping and Clifton, 2001).  The three areas of the small 

intestine (duodenum, jejunum, and ileum) all have different optimal pHs, but it is not 
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possible to isolate and measure the changes in these areas in vitro.  Many feeding studies 

have shown a lowered pH in the feces after feeding of fermentable carbohydrates (Noakes et 

al., 1996, and Kashtan et al., 1992), but there also are contradictory results showing no 

significant change in pH (Tomlin and Read, 1990, and Van Dokkum et al., 1999).   

The effects of RS and DF on cholesterol are not well understood.  The literature shows 

conflicting overall effects.  Cholesterol absorption is thought to be altered by consumption of 

DF, but the underlying mechanism is not well understood (Scheppach et al., 2001).  Possibly, 

the digestion of DF, and the resulting SCFA produced, suppress cholesterol synthesis in the 

liver (Hara et al.,1999).  Hypotheses for the mode of action of DF on cholesterol include a 

lowering of total cholesterol due to excretion into the feces (Reddy et al., 1980), decreased 

cholesterol absorption (Vahouny et al., 1988), increased cholesterol oxidation (Carroll et la., 

1978), or decreased cholesterol synthesis (Wright et al., 1990).  A decrease in total lipids, 

total cholesterol, low density lipoproteins, high density lipoproteins, very low density 

lipoproteins, triglycerides, and triglyceride-rich lipoproteins after RS feeding (de Deckere et 

al., 1993, and Nugent, 2005).  However, some studies contradict these results showing no 

change to the same parameters (Kim et al, 2003, and Noakes et al., 1996).  More studies are 

needed to determine the impact of RS on lipid metabolism. 

Butyrate is the preferred energy source for the colonocyte; however, it is not the most 

abundant product of RS fermentation.  Acetate is present in a greater concentration than 

propionate, which is in a greater concentration than butyrate.  Butyrate causes the most 

dramatic effects on the health of colonocytes, but may only affect abnormal cells by causing 

more cell turnover (Young et al., 2005).  Butyrate decreases the inflammatory response, 
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modulates intestinal motility, and promotes normal cell types by increased apoptosis which 

inhibits proliferation of cancer cells, in the activity termed tumergensis (Nugent, 2005).   

While many studies have found positive changes in the intestinal environment by feeding RS 

alone, Muir et al. (2004) suggest that only RS in combination with a traditional fiber source, 

such as wheat bran, will cause SCFA concentration to increase.  Muir et al. (2004) evaluated 

fecal samples from humans and measured the excreted SCFA, which may not accurately 

reflect the SCFA absorbed.  These researchers suggest that the optimal fiber source is a 

combination of RS and a non-starch polysaccharide, because the RS is a better substrate for 

fermentation and butyrate production, whereas the non-starch polysaccharide is a bulking 

agent (Topping and Clifton, 2001, and Noakes et al., 1996).  The increased bulk can push the 

location of fermentation to a more distal location, where the most colon cancer is found 

(Muir et al., 2004).  Reducing transit time and providing bulk also causes more cell turn over 

and constant removal of dead cells.   

Fermentation of RS can reduce protein fermentation, or dilute the toxic end products.  

Products of protein fermentation, including ammonia and phenols, are toxic, and are thought 

to lead to cancer (Birkett et al., 1996).  Ammonia promotes cell proliferation, which can 

cause cancer cells to multiply (Lin and Visek, 1991).  Phenols, the degradation product of the 

aromatic amino acids, have been known to promote skin cancer since 1959, and are thought 

to promote bladder and bowel cancers (Boutwell and Bocsh, 1959).  Conditions affecting the 

bowel, such as ulcerative colitis, reduce bowl function, making it difficult to clear the toxic 

components (Scheppach et al., 2001).  The microbiota will only ferment protein when there 

is not enough starch in the diet.  Probiotics can use the toxic end products as fuel, thereby 
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eliminating them from the lumin, and protecting the coloncytes from uptake (Birkett et al., 

1996).   The byproducts can be diluted by increasing the fiber content of the diet (Cummings 

et al., 1979, and Birkett et al., 1996).  However, it is also proposed that combining RS with 

dietary protein could increase production of SCFA (Le Leu et al., 2006). 

 

 

Glycemic index and glycemic load 

RS has a low glycemic index (GI) which makes it a good food for diabetics looking to 

maintain low blood sugar.  GI gives a measure of the impact a starch will have on blood 

glucose by ranking the glycemic potential of a food (McMillan-Price and Brand-Miller, 

2006).  The GI methodology was created in 1981, and involved comparing the example food 

to a standard (white bread) for the same amount of carbohydrate (Jenkins et al., 1981).  This 

system made it difficult to work with complex food systems, and in 1991 the Food and 

Agriculture Organization (FAO) suggested its use be restricted to diabetics (McMillan-Price 

and Brand-Miller, 2006).  A food that has a GI of 70-100+ is high, 55-70 medium GI, and 

below 55 is a low GI food (Brennan, 2005).  Corn tortillas have a 87% predicted glycemic 

index, while the white bread standard received a 94 (Tovar et al., 2003).  However, the high 

variability of tortilla manufacturing and preparation makes GI generalization difficult.   

Low GI foods promote satiety by greater release of cholecystokinin (Holt et al., 1992), keep 

blood glucose stable, and promote higher rates of fat oxidation (McMillian-Price and Brand-

Miller, 2006).  High GI meals stimulate glucose and fatty acid uptake, reducing their 
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circulation, and raising levels of hunger-stimulating hormones (McMillian-Price and Brand-

Miller, 2006).  While the GI system is still used extensively in other countries, it is not 

widely used in the United States, United Kingdom, Canada, and Australia.  The GI system is 

unproven to be helpful outside of diabetics.   

Glucose load (GL) has been suggested as a better measure of the effect of an entire food 

system on blood glucose because it evaluates the glycemic effects of the whole diet, quality 

and quantity of carbohydrate (Brand-Miller et al., 2003).  GL is the GI/100 x g of 

carbohydrate, which gives a better estimation of the total blood glucose.  One unit of GL can 

be thought of as one g of white bread carbohydrate.  GL can be reduced by either 1) lowering 

the GI of the carbohydrate, or 2) reducing total carbohydrate (Brand-Miller et al., 2003).  

Anything over 20 is considered to be a high GL, 11-19 is medium GL, and below 10 is a low 

GL (Brennan, 2005). 

The appearance of high blood glucose soon after eating means the starch consumed is rapidly 

digestible.  Refined grains and processed foods are high GI/GL foods.  High GI foods eaten 

over many years put a strain on the insulinaemic response system, and can lead to insulin 

insensitivity and hyperinsuliema (too much circulating insulin).  If these conditions continue, 

diabetes can develop, and lead to obesity and other obesity-related illnesses.    

Tortillas and nutrition 

Mexico, Central, and South America have large tortilla-making industries.  Indeed, this 

industry represents one-fifth of the entire food industry in Mexico (Martinez-Bustos et al., 

1996).  The Latin American diet of all socioeconomic classes is largely based on corn 
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products, most of them nixtamalized (Bello-Perez et al., 2006), with the amount of 

nixtamalized corn increasing as income and social standing decreases (Burton et al., 2008).  

Estimates of tortilla consumption vary, but some estimates place total caloric intake from 

tortillas as high as 70% to 90% in rural Mexico (Flores-Farias et al., 2000, and Burton et al., 

2008).   

The two nutritional benefits of tortillas are that they are high in calcium as a result of the corn 

being soaked in calcium hydroxide solution during nixtimalization, and are a good source of 

carbohydrates. Calcium content can to increase by 400% when cooked at 92° C for 40 

minutes without any steeping (Fernandez-Munoz et al., 2004).  However, they offer few 

other health benefits.  Many studies have focused on nutritional fortification of tortillas in an 

effort to make them more healthful.  The Mexican government is considering fortifying dried 

masa flour in hopes of correcting iron, zinc, and folic acid deficiencies, but only 

approximately 40% of tortillas in Mexico are made from dried masa flour (Burton et al., 

2008).  Many fortification studies focused on increasing the protein content to address the 

concern that maize is deficient in the essential amino acids lysine and tryptophan (Obatolu et 

al., 2007).  Other studies have focused on fortification of micronutrients, such as iron (Burton 

et al., 2008). 

While tortillas are mostly made from white or yellow corn, heavily pigmented varieties, such 

as blue or red corn, can also be used.  These varieties are often used for corn tortilla chips, 

and are sold for a price premium.  The pigments, such as anthyocyanins, flavonoids, and 

other phenolic acids, function as antioxidants.  Antioxidants scavenge free radicals, and may 

delay the effects of aging and disease.   
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Traditional tortilla preparation 

Among Hispanic populations, homemade, or table tortillas, are commonly eaten with most 

meals.  Making a table tortilla can be more of an art than a science, and many variations are 

possible. Tortillas were first made by the Aztecs (Cuevas-Rodriguez et al., 2009).   

To prepare a high-quality tortilla, high-quality corn is needed.  Kernels should be sound, free 

of cracks, of uniform size, and have intermediate-to-hard endosperms, with any broken 

pieces removed before milling (Rooney and Serna-Saldivar, 1990).  Traditionally, the whole 

corn is heated in a calcium oxide, or lime, solution, and allowed to steep overnight in open 

vats.  The original lime source is thought to be wood ashes; later, lime was mined from 

limestone, or cremated shells (Serna-Saldivar et al., 1990).   

The corn is washed, the kernels rubbed between the hands to remove the pericarp, and then 

hand ground between stones.  This grinding distributes the gelatinized and ungelatinized 

granules evenly among the masa (Rooney and Serna-Saldivar, 2003).  The resulting masa 

dough is baked on a flat surface over a fire.  There are still many places of the world where 

these same steps are used to produce tortillas. 

Commercially sold tortillas are gaining popularity in both Hispanic countries and the United 

States because of ease of use, and low cost.  Commercial tortillas often have a different taste 

and texture than those made traditionally.  In the United States, wheat tortillas are more 

popular than corn tortillas because of the softer texture and extended shelf life compared to 

corn tortillas, but corn tortillas are still dominant in Latin American countries.   
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Commercially sold tortillas are made by an alternate procedure utilizing dry masa flour.   Dry 

masa flours are made from traditional masa, but after grinding, the masa is dried, and the 

flour is separated by particle size.  These fractions are combined in different ratios to result in 

flours for special functions; these flours can then be reconstituted at the processing facility.  

As a result, these dry masa tortillas differ in texture and appearance from traditional tortillas, 

but are accepted for ease of use.  Dry masa flour is also sold in grocery stores for home use, 

and is gaining in popularity.   

Nixtimalization and tortilla production 

Nixtimalization, or alkaline cooking, is the process by which whole corn is prepared for 

tortilla and hominy production.  As described in the literature, nixtimalization is variable, and 

must be tailored to local conditions and corn type.  An average procedure involves cooking 

the whole corn for 20 min, (Del Pozo-Insfran et al., 2007), 30 min (Mendez-Montealvo et al., 

2007), or 60 min (Martinez-Bustos et al., 2001), in a dilute lime solution of approximately 

1%, but Rooney and Serna-Saldivar (1990) found variations of 0.8-5%.  After cooking, the 

pot is taken off the heat, and steeped between 9.5 hr (Ratnayake et al., 2007) and 15 hr 

(Martinez-Bustos et al., 2001), at temperatures ranging from 80° C (Martinez-Bustos et al., 

2001) to boiling or higher (Mendez-Montealvo et al., 2007, and Del Pozo-Insfran et al., 

2007), until the kernels are swollen.  Martinez-Bustos et al. (2001) insist that the solution 

should not be allowed to boil because high temperatures result in overcooked masa, but Del 

Pozo-Insfran (2007) noted that some varieties, including blue corn, must be cooked at boiling 

temperature to ensure nixtimalization.   
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After steeping the cooking liquor is discarded.  The corn is washed with vigorous agitation to 

remove the pericarp.  The resulting corn, named nixtamal, should have a high moisture 

content.  The exact moisture content reported by others ranges from 48-50% (Del Pozo-

Insfran et al., 2007, and Gomez et al., 1991), 46-51% (Sahai et al., 2001), and 55-58% 

(Rooney and Serna-Saldivar, 1990).  The correct moisture content for the given conditions 

ensures machinability.  

Grinding is usually done with stone plates.  Many variations in grinding are possible.  The 

gap size determination is often made empirically by operators (Ramierz-Wong et al., 1994).  

The best method to determine the correct gap size is to test different gap sizes, and select for 

coarse and medium masa based on rubbing the masa between the thumb and forefinger 

(Ramierz-Wong et al., 1994).  The grinding stones are cut with grooves radiating outward. 

The nixtamal is fed into the center of the rotating plates, and as it is pushed outward it is cut, 

kneaded, and mashed (Rooney and Serna-Saldivar, 2003).  Alternate masa production 

methods have been proposed including nixtimalization of corn meal (Cuevas-Rodriguez et 

al., 2009), and by extrusion (Arambula-Villa et al., 2001).   

The tortilla is formed when the masa is pressed into a flat disc, and cooked on a heated press, 

or stove top.  Desirable masa can be pressed between two metallic plates covered in plastic 

film and not stick to the plastic wrap (Martinez-Bustos et al., 2001).  Excess water absorption 

results in a soft and sticky masa that cannot be machined, while dry masa is too hard, and can 

also be difficult to handle (Martinez-Bustos et al., 2001).  Ideally, the tortilla will be cooked 

throughout, and the surface will puff, but retain a high moisture content. 

Tortilla processing effects     
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Since the tortilla making process is so variable many studies have been done to try and 

perfect it for industrial use.  The cooking and steeping steps have been pinpointed as greatly 

affecting the quality of the end product.  While quite a few studies have been done to achieve 

an ideal product a consensus has not yet been achieved.   

Both cooking and steeping involve lime treatment.  The solubility of calcium hydroxide in 

water at 0° C is 0.185 g/100 mL, and becomes less soluble with increasing temperature 

(Bryant and Hamaker, 1997).  Heating enhances the effects of lime and allow the kernels to 

take up more water than kernels soaked in lime without heat.  For the lime to soften the 

endosperm the pericarp must become permeable.  Once the pericarp is softened lime 

penetrates via the germ, and then into the endosperm; the germ will have the highest calcium 

content after cooking and steeping.  In non-nixtamalized products the germ absorbs 3-5 times 

more steeping solution than the endosperm (Ratkovic et al., 1982). Very little lime is retained 

in the final tortillas, and lime concentration is very high in the discarded steeping liquor.   

The first change that takes place during nixtimalization is alteration of the pericarp layer.  

Analysis of kernels at each hour of nixtimalization show that in the first 3 hr of steeping the 

pericarp absorbs the most calcium; this calcium is lost when the nixtamal is washed.  The 

calcium oxide hydrolyzes the gums from the pericarp.  The breakdown of the gums causes 

the pericarp to soften and allows for greater diffusion of calcium ions.  Arabinoxylan and 

xylose are the main components of the corn pericarp, and are the main components of the 

cooking liquor when the nixtamal is excessively washed (Martinez-Bustos et al., 2001).  The 

pericarp may contain pigments in the form of anthocyanins, flavonoids, and phenolic acids, 

in colored varieties.  Excessive washing decreases the phenolics in the resulting masa 



www.manaraa.com

33 

 

 

(Martinez-Bustos et al., 2001).  Nixtimalization affects these antioxidant pigments by 

breaking ester linkages, and releasing free phenolic forms into the cooking solution (Del 

Pozo-Insfran et al., 2007).  The result is tortillas that are lower in vitamin content that the 

original corn: acidifying the masa may help with vitamin retention (Del Pozo-Insfran et al., 

2007).   

Even though the pericarp is partly removed, its remaining components are still important to 

tortilla texture.  Masa with partial pericarp will help tortillas to bend without breaking.  In 

traditional nixtimalization 64% (w/w) of the pericarp material is lost to the cooking liquor 

(Pflugfelder et al., 1988).  Total solid losses after washing were 1.26-2.23% (Fernandez-

Munoz et al., 2004).  Industrially much of the pericarp is lost, and to mimic the properties 

imparted by the pericarp, gums or carboxymethyl cellulose are added (Martinez-Bustos et al., 

2001). 

After the pericarp is softened the calcium affects the germ where the lipids are saponified and 

released to the cooking liquor (Martinez-Bustos et al., 2001 and Del Pozo-Insfran et al., 

2007).  The germ contributes to the nutritional quality of the tortilla.  Fatty acid composition 

of the masa decreased after nixtimalization because myristic, palmitic, palmitoleic, stearic, 

oleic, and arachidic are released into the cooking liquor (Martinez-Bustos et al., 2001).  

When the corn is milled the germ contributes to machinability, and masa with germ has a 

higher breakdown tolerance than masa without germ (Martinez-Bustos et al., 2001).   

After 3 hr the calcium continues into the endosperm, with more calcium being absorbed if the 

solution is oversaturated with calcium hydroxide (Fernandez-Munoz et al., 2002).    Softer 

endosperm varieties take up water more rapidly (Serna-Saldivar et al., 1993).  During heating 



www.manaraa.com

34 

 

 

partial gelatinization of starch takes place (Martinez-Bustos et al., 2001), which facilitates 

milling and allows for further gelatinization upon final cooking.  Nixtimalization increases 

amylose content, but decreases overall starch content compared to native starch (Mendez-

Montealvo et al., 2007).   

Lime affects the protein of the endosperm as well.  The lime alters protein solubility, 

increasing the lysine and gluten availability (Fernandez-Munoz et al., 2004).  Lime releases 

bound niacin, and improves the isoleucine-leucine ratio (Serna-Saldivar et al., 1990).  The 

niacin naturally present is bound and unavailable to animals.  The protein swells but does not 

disrupt starch granules (Gomez et al., 1989). 

Cooking time affects all DSC parameters, while steeping time has an effect on peak 

temperature (Mondragon et al., 2004). Nixtimalization increased gelatinization temperature 

which was hypothesized to be because of annealing, or calcium ions stabilizing the structure 

during steeping (Mendez-Montealvo et al., 2007).  Increasing lime concentrations (0.1-1.0%) 

can also increase the gelatinization peak temperature (Bryant and Hamaker, 1997).  It is 

unclear whether annealing of starch takes place.  Annealing is accomplished by incubating 

starch granules in greater than 40% water, held usually longer than 12 hr, at a temperature 

above the glass transition temperature, but below the gelatinization temperature.  Ratnayake 

et al. (2007) suggested that an effect similar to but different than annealing, something more 

complex than annealing alone, takes place and is evidenced by the DSC data of nixtamalized 

corn versus raw corn starch.  They found that the peak temperature was increased, but the 

enthalpy was unchanged.   



www.manaraa.com

35 

 

 

Starch digestibility is altered by lime concentration.  Concentrations of less than 0.4% lime 

made starch more digestible because the kernels hold more water, swell more, and solubilize 

more than greater lime concentrations (Bryant and Hamaker, 1997).   

Longer cooking times allow for greater starch gelatinization, which results in a lower change 

in enthalaphy for gelatinization on DSC because some of the starch has already been 

gelatinized.  It is expected that the weak granules will gelatinize during cooking and steeping, 

and therefore the stronger granules will be left for DSC gelatinization, and result in higher 

onset and peak temperatures (Mondragon et al., 2004).   

It is not yet clear what the best length of time is for steeping.  Based on crystallinity and 

rheological properties 7-9 hr of nixtimalization is best for high-quality tortillas (Fernandez-

Munoz et al., 2002).  In the first 7 hr the pericarp loses crystallinity, from 7-9 hr the pericarp 

begins to be affected but crystallinity is retained, 9-15 hr the crystallinity of the endosperm 

decreases, and when corn is steeped for more than 15 hr some crystallinity is regained, 

possibly due to retrogradation (Fernandez-Munoz et al., 2002).  Nine hr is the peak for masa 

viscosity during pasting, which is also the peak crystallinity time period.  During this time 

the calcium ions could interact with amylose and amylopectin creating cross linking, and 

strengthening the masa (Frenandez-Munoz et al., 2002).   

Viscosity is affected by amount of washing.  With minimal washing (two times) being 

beneficial to masa viscosity because more gums and saponified lipids are retained (Martinez-

Bustos et al., 2001).  Viscosity is also altered by lime concentration.  The highest hot paste 

peak viscosity occurred at a lime concentration of 0.1% and further lime addition decreased 
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the hot paste peak viscosity (Bryant and Hamaker, 1997).  However, the highest ending 

viscosity occurs at a lime concentration of 1.0% (Bryant and Hamaker, 1997).   

Increasing pH and calcium concentration of masa are positively correlated.  Addition of only 

0.1% lime increased the pH of the solution from 7.44 to 11.59, but addition of lime up to 1% 

only caused an additional increase of the pH to 11.8 (Bryant and Hamaker, 1997).  A 

concentration of 0.4% will saturate the solution at 60° C in the presence of corn starch 

(Bryant and Hamaker, 1997). Seven hours provided the peak for pH and calcium content.  

The alkaline conditions induced swelling and exposed reactive sites for calcium bonding.  

Nine hours provided the minimum for pH, and as was previously mentioned, the highest 

crystallinity.  At this time calcium may be bound to form alkoxide which will decrease 

alkalinity (Bryant and Hamaker, 1997). 

Resistant starch and retrogradation in tortillas 

Tortillas can become stale within hours of removal from the oven, due to rapid retrogradation 

(Bello-Perez et al., 2006).  Tortillas have a large surface area which aids in quick moisture 

loss.  The RS content of tortillas has been shown to increase upon storage as RS 4 is formed 

(Islas-Hernandez 2006); however the sensory characteristics would make these tortillas very 

unpalatable as they would be very dry and prone to cracking (Rendon-Villalobos et al., 

2006a).  In fact, firmness and development of resistant starch followed similar trends 

(Campas-Baypoli et al., 2002).  Rendon-Villalobos et al. (2006b) found RS increased by 50% 

over 7 days of refrigerated storage, starting at 2.74% to 5.04%, but an additional 7 days of 

storage did little, only increasing the RS by 0.19%.  The peak temperature of retrogradation 

increased over storage from 51.6° C after 1 day to 55.9° C after 3 days (Bello-Perez et al., 
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2003).  This is thought to be a result of increasing crystal perfection of the reassociating 

amylose and amylopectin.  The more time a starch retrogrades the more perfect the crystals 

are.  

 The low fat content of tortillas, which is dependent on corn type but near 4.4 % for yellow 

corn (Table 2),  also favors retrogradation (Campas-Baypoli et al., 2002).  Maximum 

retrogradation for corn tortillas occurs at 13° C (Limanond et al., 2001).  Storage below the 

glass transition temperature of -5° C will inhibit retrogradation, but is not a standard storage 

condition (Gudmunsson, 1994).  Tortillas have been shown to stale at a slower rate at room 

temperature, 25° C, than at 4° C (Bueso et al., 2006).  Since retrogradation is thermally 

reversible texture can be improved some with heating.  Minimal washing helps tortillas 

reheated after 24 hr to retain the best texture (Martinez-Bustos et al., 2001).   

Extending shelf life with anti-staling agents 

A problem with commercially sold tortillas is loss of flexibility during storage.  A traditional 

tortilla has a shelf life of 3 days, 12 days if refrigerated (Serna-Saldivar et al., 1990).  Water 

loss begins almost immediately after cooking, and too much water loss results in undesirable 

tortillas.  Antistaling agents, like hydrocolloids and gums, bind water and retain texture, but 

also inhibit RS formation (Bello-Perez et al., 2006, and Rendon-Villalobos et al., 2006a).  

These processing aids enhance flexibility and strength, and reduce stickiness during 

processing and packing (Rendon-Villalobos et al., 2006b).  Gums also help eliminate tortillas 

sticking together in packaging, and improve freeze-thaw tolerance (Serna-Saldivar et al., 

1990).  Over storage RDS decreased and RS increased in tortillas, but this trend was lower in 

tortillas with added hydrocolloids (Rendon-Villalobos et al., 2006a). 
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Tortillas also have a short shelf life because of microbial spoilage.  Tortillas are a high-

moisture food (38-46%) with a high water activity (Aw = 0.96), which increases the chances 

of microbial growth and spoilage (Serna-Saldivar et al., 1990).  Preservatives and acidulants 

can inhibit microbial spoilage, but will also cause flavor changes.  If preservatives are used, 

the masa must first be acidified to pH 5.5 for best results.   

Tortillas and sensory evaluation 

Not many researchers have looked at human evaluation of sensory aspects of tortillas.  

Herrera-Corredor et al. (2007) identified sensory characteristics that increase the likelihood 

that a consumer will purchase tortillas in a supermarket; they included overall appearance, 

rollability (resistance to cracking when rolled), chewiness, taste, and overall liking.  The 

flavor of tortillas is enhanced by Maillard browning, the reaction of reducing sugars and 

peptides under heat (Serna-Saldivar et al., 1990).   

The color of the tortilla is a result of many interactions: corn color, amount of lime, extent of 

washing, extent of pericarp removal, and pH (Rooney and Serna-Saldivar, 2003).  Most 

tortillas on the market are made from white corn, and are expected to be white, but tortillas 

made from colored corn varieties do exist.  Color is also affected by nixtimalization.  

Alkaline cooking makes the masa lighter, while excessive washing makes masa less yellow 

(Martinez-Bustos et al., 2001).  Maize genotype, lime concentration, and processing may also 

affect color.  Color intensity was related to pigments present and pH (Martinez-Bustos et al., 

2001).   
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Texture is important to the quality of tortillas, thus, attempts at standardizing a method for 

measuring tortilla texture have been made.  Excessive washing (defined as washing more 

than twice) makes tortillas more prone to cracking and tearing, less likely to have enough 

puffiness, and less able to roll without cracking (Martinez-Bustos et al., 2001).  A subjective 

rollability method was originally used to measure the impact of staling on texture.  For this 

test, panelists were asked to roll a tortilla around a dowel and rate the amount of cracking on 

a scale of 1 to 5, with 1 being unrollable, and 5 being very rollable with no cracking (Flores-

Farias et al., 2000).  Rollability is important because tortillas are generally folded or rolled to 

combine with various fillings.  Aged tortillas are firmer, more rigid, and therefore less 

rollable.  The rollability when measured by a panel has inherent variability between people, 

and is not sensitive to changes over the first several hours after baking (Suhendro et al., 

1998b).   

Suhendro et al. (1998a) attempted to create a method that was more reliable and sensitive to 

the beginning changes in texture caused by the onset of retrogradation by using the texture 

analyzer.  A special attachment was made to mechanically roll the tortilla around a dowel, 

with the force required to pull the tortilla around the dowel being recorded.  This method was 

able to detect changes in the first 24 hr after baking.  This method is hard for other labs to 

replicate because of the required special TA.XT2 attachment.   

The same group also developed an extensibility method.  Extensibility is when something is 

pulled apart using tensile forces.  Extensibility is a component of rollability.  Again the 

TA.XT2 was used to pull a tortilla strip apart.  Fresh tortillas are soft and extensible, which 

results in longer distances of extension (Suhendro et al., 1999).   
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The same group also recognized that bending is an important characteristic of tortillas.  

Another method using the TA.XT2 was developed that evaluate strips of tortillas bent at 40° 

angles, measuring the force versus distance curve (Suhendro et al., 1998b).  All of these 

methods were attempts to make the measurement of texture attributes of tortillas more 

objective.  Unfortunately without the necessary attachments, labs cannot perform these 

measures and the subjective measure of rollability is often used.   

Conclusions 

While RS has a similar chemical structure to starch, it is classified as a type of DF because it 

resists digestion by human digestive enzymes.  The four types of RS are resistant to digestion 

for different reasons, but all can be used as a fermentable substrate for beneficial gut 

bacterial.  Fermentation produces SCFAs that lower intestinal pH, and provides protection 

again colon cancer by regulating apoptosis.  Because RS is a low GI food it increases satiety, 

has a low blood glucose effect, and can help with weight regulation. Ingestion of RS also has 

effects on cholesterol metabolism. 

Measurement of all four types of RS is difficult because there is no way currently to measure 

RS as eaten.  Another way to characterize a starch is to examine the gelatinization 

characteristics with a DSC.  Different mutants produce different gelatinization patterns.  

Retrogradation affects RS percentage, and can also be measured by DSC.  Combining the 

information gained from DSC analysis with the RS percentage could provide a clearer 

understanding of how a high-RS starch will behave in a food product. 
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Dent corn is low in RS, and has a harder endosperm than floury corn.  Tortillas are made 

from floury corn and are a staple food product in Latin American countries. They are also 

gaining popularity in the United States.  Tortillas are traditionally produced by 

nixtimalization of floury corn, the process of soaking corn in lime to soften it, and aid in 

grinding.  The process of nixtimalization is variable, but because the process conditions 

affect the end product, finding ideal processing conditions is the key to producing a high-

quality product.   

Tortillas are high in calories and calcium, but otherwise have little nutritional benefit.  

Making tortillas from corn mutants, including high-amylose mutants, could alter the RS 

content, and consequently the DF content.  Tortillas are a high GI food, but this could be 

altered by increasing the DF content.   

The texture of tortillas is very important to tortilla quality.  Tortillas stale rapidly, and 

become unpalatable not long after they are produced.  Commercial tortillas make use of anti-

staling agents which retard staling. Slowing staling also slows formation of RS 3 in tortillas.  

Instrumental methods have been created to quantify textural changes in tortillas.   Corn 

varieties high in amylose provide increased RS, but could adversely affect the texture of 

products.     
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Table 1.  Dietary fiber components of corn kernel, starch endosperm, and pericarp. 

Fraction Percent 

of Kernel 

Dry 

Substance 

Hemi-

cellulose 

Cellulose Lignin Soluble 

Fiber 

Total 

Fiber 

Percentage 

of Kernel 

Fiber 

Whole 

Kernel 

100 6.7 3.0 0.2 0.1 9.5 100 

Starchy 

Endosperm 

81 -- -- -- 0.5 1.5 12 

Pericarp 5.3 67 23 0.1 0.2 90.7 51 

 Based on Watson, 2003 
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Table 2.  Average composition of seven yellow dent corn hybrids (% dwb) 

Fraction Percent 

Dry 

Weight of 

Whole 

Kernel 

Starch Fat Protein Ash Sugar 

Whole 

Kernel 

100 73.4 4.4 9.1 1.4 1.9 

Endosperm 82.9 87.6 0.8 8.0 0.3 0.62 

Germ 11.1 8.3 33.2 18.4 10.5 10.8 

Pericarp 5.3 7.3 1.0 3.7 0.8 0.34 

Based on Watson, 2003, Earle et al. 1946 
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Fig. 1.  Example of a Differential Scanning Calorimeter (DSC) curve indicating 
gelatinization of a starch-water slurry.  The vertical dashes indicate where onset, peak, and 
end point temperatures would be measured.  The ∆H value is calculated by measuring the 
area under the curve.    
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THERMAL CHARACTERISTICS OF STARCH FROM CORN MUTANTS AND 

EXOTICS WITH DIFFERENT AMOUNTS OF RESISTANT STARCH 

A paper to be submitted to Cereal Chemistry 

Kim A. Rohlfing, Linda M. Pollak, and Pamela J. White 

Abstract 

Ten parent corn lines, comprised of four mutants (dull sugary2, amylose-extender sugary2, 

amylose-extender dull, and an amylose-extender with introgressed Guatemalen germplasm 

(GUAT ae)) and six lines with introgressed exotic germplasm backgrounds, were crossed 

with each other to create 20 progeny crosses.  The parents and progeny crosses varied in 

resistant starch (RS) percentage.  The lines and crosses with increased RS might be used in 

breeding corn to use as a means to increase dietary fiber in cornstarch-based foods.  The RS 

was measured from the extracted starch, targeting the measurement of RS 2, which is present 

in ungelatinized starch, by using the Megazyme Resistant Starch kit.  The RS values from the 

10 parent lines varied from 18.3 % to 52.2 %, and the values from the 20 progeny crosses 

ranged from 16.6 to 34.0 %.  The % RS of parents was not additive in the offspring, but 

greater RS in parents was correlated to greater RS in the progeny crosses (r = 0.63).  The 

Differential Scanning Calorimeter (DSC) was used to measure the gelatinization and 

retrogradation characteristics of the starches.  Peak gelatinization temperature and change in 

enthalpy were positively correlated to % RS (r = 0.65 and r = 0.67, P ≤ 0.05); however, the 

retrogradation parameters, a measure of RS 3, did not correlate with % RS (RS 2 type).  All 

parents and progeny crosses, with the exception of the Guat ae parent (52.5 %), had % RS 
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greater than that of commercial corn starch (8.9%), but lower than that of a high-amylose 

(ae) standard (50 % apparent amylose, 40.2 % RS).  The % RS and onset temperature 

increased with the addition of the ae gene.  Understanding the impact of RS on the 

gelatinization characteristics of starches will help the food industry understand its impact on 

food processing, especially processing involving heating.   

Introduction 

Four types of resistant starch (RS) have been defined.  RS 1 is resistant due to the 

surrounding food matrix, RS 2 is present in ungelatinized, raw starches, RS 3 is created by 

retrogradation, and RS 4 is produced through chemical alteration (Englyst et al., 1996).  

Incorporation of RS into the diet provides many health benefits:  it serves as a prebiotic, or 

fermentable substrate, for the growth of probiotics, lowers the pH of the colon (Cherrington 

et al., 1991), increases mineral absorption (Courdray et al., 1997), and increases cell turnover 

(Young et al., 2005).  Cholesterol metabolism may be down regulated by RS, by production 

of short-chain fatty acids that may either suppress cholesterol synthesis in the liver (Hara et 

al., 1999), or decrease cholesterol absorption (Vahouny et al., 1988).    

Corn endosperm mutants can affect the appearance of the kernel and/or underlying 

component quality, while double mutants can have synergistic effects on endosperm 

appearance and quality.  Exotic germplasm used for food may have been selected for unusual 

endosperm quality.  Corn-starch properties can be modified via traditional plant breeding 

methods by using major (e.g. naturally occurring mutant genes), or minor (modifying genes) 

genetic factors (Ji et al., 2004).  Exotic corn lines may provide unusual traits of interest, 

including increased % RS, through the presence of modifying genes.  High-amylose 
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(amylose-extender, ae) corn lines provide greater amounts of RS 2 than normal corn through 

a major (mutant) gene; thus, crossing ae and exotic corn types could increase the RS, provide 

unique materials for food use, and possibly provide cooking properties better than ae corn 

lines used alone.  

Whereas four types of RS have been defined, only RS 2, 3, and 4 are routinely measured.  

The process of extraction may alter RS 1 because it destroys the surrounding food matrix.  

There are several options available for measuring RS 2, 3, and 4.  The Megazyme RS kit 

measures RS 2 effectively, and is designed to screen large numbers of samples (McCleary 

and Monaghan, 2002).  However, most starch is not eaten in an ungelatinized form:  the 

starch is generally cooked.  Thus, the Megazyme kit, which includes no gelatinization step, 

may not be an accurate measure of RS as eaten.   

A Differential Scanning Calorimeter (DSC) can measure starch gelatinization characteristics, 

including retrogradation.  Retrogradation is thought to create RS 3, thus, starches with a high 

percentage of retrogradation might be predicted to have high RS percentages (Haralampu, 

2000).  The starch properties from many corn mutants, including sugary2 (su2), amylose 

extenter (ae), and amylose dull (ae du) have been examined on a DSC (Tziotis et al., 2005).  

Less work has been done on double mutants, and especially on other mutants that vary in RS.  

An ae starch might be predicted to provide a large amount of RS 2 and 3.  The ae starches 

will not gelatinize completely under boiling temperatures (Champ, 1992), leaving some of 

the RS 2 intact.  The starch that did gelatinize is available for retrogradation and can be 

converted to RS 3.   
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Thermal characterization of starches from corn lines with elevated levels of RS has not been 

done, especially in relation to both RS 2, measured with the Megazyme kit, and RS3, 

measured with a DSC. These evaluations would be useful in predicting behavior of the 

starches, and thus the corn, in food products. 

The objectives of this study were to:     

1) Identify new corn breeding crosses containing both high % RS and potential for use 

in high quality foods, by crossing four mutants and six lines with introgressed exotic 

backgrounds with each other;  

2) Evaluate the thermal characteristics of the starch from these parents and their crosses 

on the DSC;  

3) Compare the percentage of RS 2 in the starches measured by using the Megazyme 

Resistant Starch kit (RS 2), with the % RS 3 and other thermal characteristics 

measured on the DSC. 

Materials and Methods 

Corn Materials 

Ten corn lines (Zea mays L.), four mutants and six lines with introgressed exotic 

backgrounds (Table 1), termed ‘parents,’ were crossed with each other to create 20 progeny 

crosses (Table 2).  The GUAT ae parent is the first public 70% amylose line (Campbell et al., 

2007).  For easier discussion and comparison in this paper, the progeny crosses are separated 

into four groups and identified by their first parent, creating the mutant groupings of dull 
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sugary2 (du su2),amylose-extender sugary2( ae su2), amylose-extender dull (ae du), and an 

amylose-extender with introgressed Guatemalan germplasm (GUAT ae). 

All progeny crosses were grown at Juana Diaz, Puerto Rico in 2006 and 2007 and were of the 

second selfed generation in the process of developing inbred lines.  Ears were harvested at 

full maturity, and dried at 37.5° C to approximately 12% moisture.  Seeds were stored at 4° C 

and 10 % relative humidity until needed for starch extraction.  Seeds from individual ears 

were pooled and 15 kernels were randomly selected for each starch extraction.  Commercial 

corn starch (Sigma Chemical Co., St. Louis, MO) was used as a typical corn-starch control, 

and a high-amylose control, (High Am-C, amylogel 03001, 50% apparent amylose, Cargill, 

Inc, Cedar Rapids, IA) was used as an ae control in the analyses. 

Starch Extraction 

From each parent and progeny cross, starch was extracted twice from two sets of 15 

randomly selected kernels from an individual ear.  The two extractions were treated as 

replicates. Starch was extracted from the 15 randomly selected kernels based on the 

procedures of Krieger et al. (1997) with the following modifications.  A 100-µm filter 

(N100C CellmicrosievesTM, Biodesign Inc., New York, NY) was used as suggested in the 

Megazyme RS Kit (McCleary and Monaghan, 2002).  The filtrate was allowed to settle at 4° 

C for 24 hr, after which the supernatant was discarded.  The remaining slurry was centrifuged 

at 1000 x g revolutions per min, for 10 min, and the supernatant was again discarded.  The 

pellet was dried at 45° C for 24 to 48 hr.  After extraction, starches were stored in a 

desiccator until needed for RS and DSC analyses. 
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RS determination 

The Megazyme RS Kit (K-RSTAR, Megazyme International, Bray, Ireland) was used to 

determine the RS content of ungelatinized starch. The following modification was used:  50-

µl of amyloglucosidase was added to 50 µl of diluted RS solution to ensure all RS was 

converted to glucose before the addition of glucose oxidase/peroxidase reagent (GOPOD).  

All analyses for each replicate were conducted twice and the averages were computed. 

 

DSC 

The method of White et al. (1990), with modifications by Krieger et al. (1997) was followed.  

Briefly, starch (4 mg, dwb) was weighed in stainless steel pans, 8-µL of distilled water was 

added, and the pan was sealed.  Pans were added to the DSC Diamond by using an 

autosampler, and Intercooler 2P (Perkin-Elmer, Norwalk, CT).  The intercooler kept the pans 

in the autosampler at -100° C.  Once the pans entered the DSC oven they were equilibrated at 

25° C for 5 min, and then scanned from 25 to 180° C at 10° C per min.  Data was then 

analyzed with Pyris Step Scan software (V3.7, Perkin-Elmer, Norwalk, CT).  All analyses for 

each replicate were conducted twice, and the averages were computed.  Onset temperature 

(ToG), peak temperature (TpG), and change in enthalpy (∆HG) were computed for the initial 

gelatinization.  The gelatinized pans were stored for 7 days at 4° C and re-scanned to 

determine retrogradation by using the same program as for gelatinization, and measuring 

retrogradation onset (Tor), retrogradation peak temperature (Tpr), and change in enthalpy of 

retrogradation (∆Hr) (White et al., 1989).  Endpoint was recorded, but is not presented 
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because differences were not significant.  The % retrogradation (% r) is the ∆Hr divided by 

the ∆HG. 

Statistical analyses 

The proc ANOVA from Statistical Analysis Systems (SAS Institute, Cary, NC) was used to 

determine significant differences (α = 0.05) between lines.  Correlations were evaluated 

between RS and all DSC parameters by using Excel (Microsoft Office 2007, Seattle, WA).  

Regression analyses, using SAS, were done between the % RS averages of progeny crosses 

and the parents of those progeny crosses to determine if % RS was an additive trait. 

 

Results and Discussion 

RS 

Of the parents studied, the ones with the ae gene in their backgrounds had the greatest % RS 

(Table 3).  The GUAT ae parent was greatest overall in RS at 52.2%, and different from all 

other lines.  The ae du parent also had a high % RS at 30.6, and was intermediate compared 

to the GUAT ae parent and the remaining parent with values ranging from 18.3 to 23.9 %.    

The progeny crosses had more variability than the parents.  Progeny crosses with GUAT ae 

in their background had the greatest % RS, ranging from 23.7 to 34.0%, but none retained the 

% RS of the GUAT ae parent (52.2 %, Table 3).  In general, the % RS increased in the order: 

du su2 < ae su2 < ae du.  The exotic parent did not affect % RS enough to produce 

differences between the lines of the first three mutant parent groups (du su2, ae su2, ae du).  
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For example, the % RS of the progeny crosses, (du su2/AR)-3-1 through (du su2/CU)-3-2, 

are not statistically different (Table 3).  The AR and CU parents provided similar amounts of 

RS to their progeny.  Mutant progeny crosses with ae su2 and ae du followed similar trends.   

The progeny crosses with the mutant parent, GUAT ae, differed between exotic crosses.  The 

exotic sources URS and BR contributed less RS than one of the AR crosses and the DK 

parents.  All of the progeny crosses are of the S2 generation when homozygosity of a trait 

throughout an entire ear of corn is not ensured.  Successive generations of the GUAT ae/AR 

cross should be grown and analyzed.   

All parents with the exception of GUAT ae and progeny crosses had RS values greater than 

the commercial cornstarch (8.9%), but lower than the High Am-C (40.2%).  Regression 

analysis showed that greater RS in the parents lead to greater RS in the progeny crosses (r = 

0.59, P ≤ 0.05, Figure 1), but expression of RS was not additive.  Parents with greater % RS 

did not combine to create progeny crosses with RS greater than the parent with greater % RS.  

The recessive genes, ae, su2, and du, previously were shown to increase amylose expression 

(Shannon and Garwood, 1984).  Presence of the ae gene increased the amounts of amylose, 

which lead to increased amounts of RS, as previously noted by Shu et al. (2007).   The ae du 

gene also increased the amylose content of corn starch by 10-15% (Shannon and Garwood, 

1984).   

 

DSC 
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The parents had less differentiation in both gelatinization and retrogradation profiles than did 

the progeny crosses (Table 3).  The GUAT ae parent showed a large ∆HG of 34.8 J g-1, but a 

very small ∆Hr of 3.2 J g-1.  The parent with the greatest % r was the BR parent, which also 

had the lowest % RS as measured by the Megazyme kit.    

The progeny crosses showed a slightly greater TpG range (68.3 to 76.4° C) than the parents 

(61.8 to 74.7° C, Table 3).  The strongest correlations were between % RS and TpG (r = 0.65), 

and % RS and ∆HG (r = 0.67).  The greatest ∆HG was for the (GUAT ae/DK)-1-1 cross with 

a ∆HG of 17.5 J g-1.  Starch from all progeny crosses had a ∆HG near that of the commercial 

corn starch (13.1 J g-1).   

The % r was highly variable among the mutants, ranging between 6 and 52%, with no 

correlations noted between RS and any retrogradation parameter (Table 3).  Differences did 

not depend on mutant groups.   

The starch from the GUAT ae group had among the highest onset and peak temperatures, 

with the rest of the progeny crosses following the trend du su2 < ae su2 < ae du (Table 3).  

Previously, the presence of the su2 gene was shown to increase the starch component, 

amylose, by approximately 10%, (Campbell et al., 1994).  In other work, the su2 gene 

decreased the ToG and the ∆HG values, especially compared to normal corn starch (Inouchi et 

al., 1984).  Although increased amylose leads to increased RS, the su2 gene causes increased 

digestibility, possibly because of the long B-chains and few branch points of the amylose in 

su2 mutants (Takeda and Preiss, 1993).  Branching slows digestion, thus fewer branch points 

could increase digestibility and reduce the % RS.  These observations were reflected in the 

data with progeny crosses containing the su2 gene, which had among the lowest onset 
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temperatures and among the lowest RS.  This observation and explanation does not take into 

account the possibility of RS creation through tangled amylose chains forming enzyme-

inaccessible areas.  Starches with greater gelatinization temperatures might retain more of 

their RS 2 during heating.  Temperatures of up to 180° C may be needed to fully gelatinize 

starches containing % amylose of 50% or higher. 

Retrogradation of starch from individual mutants should vary according to their amylose to 

amylopectin ratios (Zhang et al., 2008).  Amylose recrystallizes quickly upon cooling, 

whereas amylopectin recrystallizes more slowly.  Starch with increased % r should have 

greater RS 3 content than starches with low % r.  The % RS of the corn starch in the raw state 

is likely to be altered by gelatinization.  Either a decrease or increase in RS is possible, 

although the mechanism is not perfectly understood (Yao et al., 2009).  An increase in RS 

could be caused by annealing during gelatinization and a decrease could be caused by rupture 

of the starch granule, entry of water into the granule, followed by less ability of the starch 

chains to realign.   

Both parents and progeny crosses in this study showed unusual DSC peak shapes with a large 

amount of tailing.  The tailing at the beginning and end of the peak made the peak 

measurement difficult with the software available.  The ToG and Tor were most affected by 

tailing of the peak, creating a large variance for onset temperature, but also for the ∆HG and 

∆Hr.  More precise ∆H measurements would provide less variation in % r.  
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Conclusions 

There are several commercial options available for manufacturing RS, but traditional plant 

breeding methods have not been fully examined for developing varieties used for producing 

food ingredients with enhanced amounts of RS.  This study examined 20 exotic crosses of 

maize from 10 parents with mutant or exotic backgrounds for their RS 2 and thermal 

characteristics as a measure of RS 3.  The progeny crosses did not have greater % RS than 

their parents, showing no transgressive segregation.  A moderate correlation occurred 

between % RS and TpG, suggesting that RS 2 remains after processing involving heat 

treatment.  The GUAT ae mutants had the greatest % RS and TpG, and the starches from the 

parents and progeny crosses had more RS 2 than commercial corn starch.  Little RS 3 was 

found when the starches were evaluated for retrogradation, the ∆Hr values were smaller than 

normal cornstarch.  Using traditional plant breeding to develop corn lines for increased RS 

seems promising, particularly with the identification of parent lines high in amylose (greater 

than 50%).  Although RS 2 is present in ungelatinized starches, starch is not usually eaten in 

this raw form, and much RS 2 may be lost upon cooking.  Use of RS 3 as a food ingredient 

should provide more RS and dietary fiber retention after cooking. The development of high-

amylose, high-RS corn types could provide new sources of high-fiber products useful to the 

food industry in its quest for healthful foods and food ingredients. 
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Table 1.  Pedigree information and ID labels for 10 parent lines.   

Pedigree ID Label When/Where 
grown 

Generation 

HSY99 du su2 du su2 Juana Diaz Puerto 
Rico, 2005-2006 

Inbred line 

HSY99 ae su2 ae su2 Juana Diaz Puerto 
Rico, 2005-2006 

Inbred line 

HSY99 ae du ae du Juana Diaz Puerto 
Rico, 2005-2006 

Inbred line 

GUAT209:S13//Oh43ae/H99ae-1-2-1 GUAT ae Iowa Agronomy 
Farm 2006 

S3 

AR01105:S01-1082 AR Iowa Agronomy 
Farm, 2005 

S1 

UR13061:S22-1092 URS Iowa Agronomy 
Farm 2006 

S1 

CU110:N17-1172 CUBA Iowa Agronomy 
Farm, 2005 

S1 

B/3/DK212T:S610-8-1-3-4-8-2 DK Iowa Agronomy 
Farm, 2003 

S6 

BR52051:S17-1112 BR Iowa Agronomy 
Farm, 2005 

S1 

UR13085:N214-14-1 URN Iowa Agronomy 
Farm 2006 

S2 
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Table 2.  Pedigree information and ID labels for 20 progeny crosses, grown in Juana Diaz 
Puerto Rico in 2006-2007, of the S2 generation. 

Cross Pedigree1 ID Label 
(HSY99 du su2/AR011050:S01-1082)-2-2 (du su2/AR)-2-2 
(HSY99 du su2/CU110:N17-1122)-3-1 (du su2/CU)-3-1 
(HSY99 du su2/CUBA110:N17-1122)-3-2 (du su2/CU)-3-2 
(HSY99 du su2/AR011050:S01-1082)-2-1 (du su2/AR)-2-1 
(HSY99 du su2/AR011050:S01-1082)-2-3 (du su2/AR)-2-3 
(HSY99 du su2/CUBA110:N17-1122)-3-1 (du su2/AR)-3-1 
(HSY99 du su2/CUBA110:N17-1122)-3-2 (du su2/AR)-3-2 
  
(HSY99 ae su2/AR011050:S01-1082)-3-1 (ae su2/AR)-3-1 
(HSY99 ae su2/UR13061:S22-1092)-2-1 (ae su2/URS)-2-1 
(HSY99 ae su2/AR011050:S01-1082)-03)-02 (ae su2/AR-)3-2 
  
(HSY99 ae du/AR011050:S01-1082)-1-1 (ae du/AR)-1-1 
(HSY99 ae du/UR13085:N215-14-1)-2-2 (ae du/URN)-2-2 
(HSY99 ae du/AR011050:S01-1082)-1-2 (ae du/AR)-1-2 
(HSY99 ae du/UR13061:S22-1092)-3-2 (ae du/URS)-3-2 
  
(GUAT209:S13/Oh43ae/H99ae/AR011050:S01-
1082)-1-1 

(GUAT ae/AR)-1-1 

(GUAT209:S13/Oh43ae/H99ae/UR13061:S22-1092)-
2-1 

(GUAT ae/URS)-2-1 

(GUAT209:S13//Oh43ae/H99ae/UR13061:S22-1092)-
2-2 

(GUAT ae/URS)-2-2 

(GUAT209:S13//Oh43ae/H99ae/3/BR52051:S17-
1112)-1-2 

(GUAT ae/BR)-1-2 

(GUAT209:S13//Oh43ae/H99ae/3/DK212T:S610-8-1-
3-4-8-2)-1-1 

(GUAT ae/DK)-1-1 

(GUAT209:S13//Oh4 ae/H99ae/3/DK212T:S610-8-1-
3-4-8-2)-1-2 

(GUAT ae/DK)-1-2 

1Numbers outside of pedigree parenthesis refer to ear number. 
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Table 3.  The % RS as measured by the Megazyme Resistant Starch kit, a measurement of RS 2 for parents and 20 progeny 
crosses.  Gelatinization and retrogradation characteristics as measured by a differential scanning calorimeter (DSC), scanning from 
25 to 180° C.  ID labels can be found in Table 1. Values are the average of three replications.  Values having the same letter in the 
same column are not significantly different (α = 0.05).   

  Gelatinization Retrogradation 

Parent ID RS (%) ToG (°C) TpG (°C) ∆HG Tor (°C) Tpr (°C) ∆Hr % r 

BR 18.3 c 70.6 a 74.6 a 15.3 ab 44.9 b 59.9 ab 9.0 a .62 a 

DK 18.8 c 67.6 ab 72.6 a 13.5 ab 47.7 ab 52.4 b 1.0 bc .07 bc 

CUBA 22.0 c 70.4 a 74.7 a 13.5 ab 49.7 ab 58.6 b 2.4 bc .17 abc 

URS 21.9 c 69.0 a 73.7 a 11.8 ab 53.2 ab 57.8 b 1.0 bc .10 bc 

du s2 23.9 c 63.8 bc 66.9 b 3.3 b 53.0 ab 73.5 a 1.9 bc .56 a 

ae su2 18.5 c 60.95 c 61.8 b 8.5 ab 54.2 ab 57.9 b 0.5 c .05 c 

ae du 30.6 b 69.0 a 73.3 a 6.4 ab 51.3 ab 57.2 b 5.9 ab .53 ab 

AR 18.7 c 69.6 a 72.7 a 10.1 ab 54.8 ab 60.0 ab 1.7 bc .18 abc 

GUAT ae 52.2 a 62.3 c 66.7 b 34.8 a 60.8 a 62.7 ab 3.2 bc .30 abc 

URN 19.1 c 71.3 a 73.7 a 11.1 ab 59.8 ab 63.2 ab 1.0 bc .09 bc 

Cross ID Label         



www.manaraa.com

         

 

 

8
0 

(du su2/AR)-3-1 19.5 defg 65.7 fgh 71.5 fgh 11.3 def 52.7 bcd 60.5 bcdefgh 2.1 bcd .19 abcd 

(du su2/AR)-3-2 20.6 cdefg 64.0 gh 68.3 ij 10.7 defg 53.0 bcd 58.9 defgh 1.7 cd .15 bcd 

(du su2/AR)-2-1 16.9 g 62.5 h 67.5 j 7.9 hij 54.2 bcd 59.4 cdefgh 3.2 bcd .43 abcd 

(du su2/AR)-2-2 16.6 g 63.9 gh 71.1 ghi 8.2 hij 55.9 abcd 57.7 efgh 1.7 cd .21 abcd 

(du su2/AR)-2-3 17.1 g 66.7 efg 71.8 efgh 7.2 ij 50.4 cd 56.4 gh 2.7 bcd .28 abcd 

(du su2/CU)-3-1 17.3 g 67.6 defg 72.6 defgh 9.4 efghi 48.8 d 57.5 fgh 3.0 bcd .32 abcd 

(du su2/CU)-3-2 16.9 g 64.6 gh 70.2 hij 12.3 cd 53.1 bcd 59.8 cdefgh 2.2 bcd .19 abcd 

(ae su2/AR)-3-1 17.9 fg 62.3 h 68.5 ij 8.8 ghij 51.3 bcd 58.3 efgh 1.4 d .17 abc 

(ae su2/AR)-3-2 18.2 fg 65.6 fgh 72.9 cdefgh 8.4 ghij 51.3 bcd 57.6 efgh 1.2 d .14 cd 

(ae du/AR)-1-1 20.9 cdefg 68.6 bcdef 73.2 bcdefg 9.7 efgh 59.3 abc 64.1 abcd 1.2 d .13 cd 

(ae du/AR)-1-2 20.6 cdefg 69.4 abcdef 73.8 abcdefg 6.5 j 56.9 abcd 61.0 bcdefg 2.8 bcd .44 abcd 

(ae du/URN)-2-2 22.6 bcde 71.9 ab 75.8 ab 8.0 hij 50.8 bcd 54.8 h 4.0 bcd .50 abc 

(ae du/URS)-3-2 22.4 bcdef 67.7 cdefg 71.9 efgh 9.3 fghi 50.8 bcd 56.5 gh 1.3 d .06 d 

(GUAT ae/AR)-1-1 34.0 a 66.8 efg 74.2 abcdef 12.4 cd 64.6 a 67.3 a 5.7 abc .47 abc 

(GUAT ae/AR)-1-2 25.6 b 71.1 abcd 74.3 abcde 8.3 hij 50.7 bcd 58.5 defgh 4.4 abcd .47 abc 

(GUAT ae/BR)-1-2 24.4 bc 70.5 abcde 75.0 abcd 13.7 bc 48.1 d 56.8 fgh 2.7 bcd .20 abcd 
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8
1 

(GUAT ae/URS)-2-1 23.7 bcd 73.2 a 76.4 a 12.7 cd 60.4 ab 63.3 abcde 4.3 abcd .31 abcd 

(GUAT ae/URS)-2-2 24.6 bc 71.6 abc 75.7 abc 16.0 ab 55.1 abcd 66.2 ab 8.4 a .52 ab 

(GUAT ae/DK)-1-1 33.2 a 70.2 abcde 73.0 cdefgh 17.5 a 59.5 abc 64.9 abc 6.1 ab .34 abcd 

(GUAT ae/DK)-1-2 31.4 a 69.0 bcedef 74.2 abcdef 11.7 cde 55.2 abcd 62.4 abcdef 5.9 ab .40 abc 
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Figure 1. Relation of % RS in parents to % RS in progeny crosses (r = 0.59, P ≤ 0.05).  Each 

data point is the average of the % RS for the parents and the progeny crosses for each line. 
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RESISTANT STARCH EFFECTS ON TORTILLA TEXTURE 

A paper to be submitted to Cereal Chemistry 

Kim A. Rohlfing, Alix Paez, and Pamela J. White 

Abstract 

A high-amylose, non-floury corn type with 55.2% resistant starch (RS), a floury corn type 

with 1% RS, and a 1:1 blend with 28.2% RS were used to make traditional tortillas.  Whole 

corn was nixtamalized and ground to make masa.  The masa was evaluated for pasting 

properties on a Rapid-Visco Analyser.  The high-amylose masa slurry gelatinized only 

slightly, as noted by a small change in peak viscosity during the 95° C heat treatment.  The 

floury masa had the greatest peak viscosity, whereas the blend was intermediate in value.  

Tortillas were evaluated by an 11-member sensory panel who evaluated the textural attributes 

of grittiness, moistness, chewiness, rollability, and tearability.  The floury tortillas were 

chewier, more rollable, and grittier than the high-amylose tortillas.  The blend tortillas were 

intermediate in most parameters.  The cutting force of the high-amylose tortillas, as measured 

by a texture analyzer, was very low, whereas the blend and floury tortillas required more 

force.  Chewiness was correlated to rollability (r = 0.99, P = 0.05).  The RS percentage was 

correlated to rollability (r = 0.99), and cutting force (r = 0.99).  The floury and blend tortillas 

had a firm texture that would be expected when eating a tortilla with a filling.  The high-

amylose tortillas fell apart with very little force, and would not roll around a filling, making 

them unsuitable for this use.  Although the high-amylose tortillas had increased dietary fiber 
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in the form of RS, it had very poor textural attributes.  The blend tortillas retained enough of 

the textural properties of the floury tortilla to make it a suitable product.  

Introduction 

Corn tortillas, a staple food product in Latin America, are gaining popularity in the United 

States and Europe.  Consumption of corn tortillas is very high in Mexico, Central and South 

America.    Traditional tortillas are low in dietary fiber, with the actual amount varying 

depending on the corn variety and processing conditions.  The fiber contribution results from 

the pericarp and tip cap materials remaining in the masa after processing.  The diets of most 

individuals in the United States fall short of the recommendations for dietary fiber of 25 

g/day for adult females, and 38g/day for adult males (American Dietetic Association, 2008).  

Development of a high-fiber tortilla would provide a more healthful food choice, not only 

because of the contribution of the fiber, but also because calories from available starch would 

be replaced with low-calorie resistant starch (RS, Behall and Howee, 1996).  A high-fiber 

tortilla could be produced using masa from high-RS corn types, especially high-amylose 

varieties.   

Four types of RS exist, categorized by the source of resistance. The first type of RS is made 

resistant by the surrounding food matrix; RS 2 is present in ungelatinized, raw starches; RS 3 

is created by retrogradation; and RS 4 is chemically altered to be resistant (Englyst et al., 

1996).  High-amylose starches are high in RS 2 (Themeier et al., 2005).  RS has many 

beneficial effects on digestion.  Prebiotics, including RS, function as fermentable substrates 

for probiotics, which are beneficial gut bacteria.  Fermentation of RS produces short-chain 

fatty acids (SCFA), which can increase calcium and magnesium absorption (Courdray et al., 
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1997).  SCFA lower the pH of the digestive mucosa which inhibits growth of pathogenic 

bacteria (Cherrington et al., 1991).  Cholesterol absorption may be affected by RS, but the 

mechanism is not well understood:  SCFA may suppress cholesterol synthesis in the liver 

(Hara et al, 1999), or decrease cholesterol absorption (Vahouny et al., 1988).  Butyrate, a 

SCFA, helps the colonocyte regulate apoptosis, and reduces the risk of colon cancer (Young 

et al., 2005).   

Inclusion of RS in the diet also helps lower the glycemic index (GI) of a given food product.  

Low GI foods promote satiety by release of cholecystokinin (Holt et al., 1992), keep blood 

glucose stable, and promote higher rates of fat oxidation (McMillian-Price and Brand-Miller, 

2006).  A typical corn tortilla made from floury corn has a GI of 87, compared to a white-

bread standard of 94 (Tovar et al., 2003).  High-RS tortillas would have a far lower GI.  

Eating foods high in RS and dietary fiber, along with a healthy, balanced diet, may decrease 

rates of obesity and obesity-related illness. 

Tortillas are a simple food system of nixtamalized corn that is ground, and baked into a flat 

disc.  Traditional methods of nixtamalization increase the digestibility of corn, and increase 

the calcium content by as much as 400% (Fernandez-Munoz et al., 2004).  Traditional 

tortillas are made with floury corn, which has a soft endosperm that grinds easily, but the 

corn source can vary according to local preferences and availability.  Starch from the floury 

endosperm, when evaluated as a slurry in a Rapid Visco Analyser, had a low gelatinization 

onset temperature of 60.8° C, a wide range of gelatinization 13.5° C, a high pasting onset 

temperature, and low values for peak viscosity, breakdown, and setback (Seetharaman et al., 

2001).  Flour from high-amylose corn types has increased amylose content (50% or higher), 
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and the corn starch has been successfully incorporated into many food systems, including 

breads, muffins, and spaghetti (Akerberg et al., 1998, Yamada et al., 2005, Sanz et al., 2008, 

and Sozer et al., 2006).  The dietary fiber content of corn flour and masa, and thus a finished 

tortilla, might be increased by crossing a high-amylose corn mutant with a floury-type corn.   

Texture is important to tortilla functionality.  An ideal tortilla should withstand wrapping 

around a filling without cracking, a property known as rollability.  Foods containing high-

amylose starches can suffer from some of the textural problems associated with foods high in 

traditional dietary fiber:  too dense, dry, and coarse (Sanz et al., 2007).  Increasing the RS of 

tortillas could make them nutritionally beneficial for Americans, but also negatively affect 

the texture.  The overall objective of this study was to examine the texture of tortillas made 

from corn containing different levels of RS, by both instrumental and human sensory 

analyses.  

Materials and Methods 

Corn Material 

Two corn types from Genetic Enterprises International were used for this study, a  floury 

variety with an Ecuadorian background (floury, fl1fl1fl11) and a high-amylose variety 

(amylose-extender, ae; aeaeae).   The high-amylose variety was obtained by selfing two ae 

ae hybrids of similar maturities.  The floury variety was obtained by selfing two fl fl  hybrids.  

All lines were grown in Sheldahl, Iowa in the summer of 2007.  These lines were previously 

characterized by Yao et al. (2009).  

Proximate Analysis 
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Each corn type was analyzed for protein, oil, and starch  by using near infrared spectroscopy 

(NIR, Foss 1241 transmission scanner, Eden Prairie, MN), and the values estimated from 

predicted values (Fox et al., 1992). All values are reported on a dry-weight basis (dwb). The 

values for the 1:1 blend were mathematically calculated.  

 

Resistant starch measurement 

Masa was filtered through a 100-µL filter (N100C CellmicrosievesTM, Biodesign Inc., New 

York, NY).  The starch was centrifuged at 1000 x g revolutions per min, for 10 min, the 

supernatant discarded, and the pellet dried overnight at 45° C.  The extracted starch was then 

analyzed with the Megazyme RS Kit (K-RSTAR, Megazyme International, Bray, Ireland) to 

determine the RS content of the masa (after nixtamalization and grinding).  The following 

modification was used:  50-µl of amyloglucosidase was added to 50-µl of diluted RS to 

ensure all RS was converted to glucose before addition of glucose oxidase/peroxidase reagent 

(GOPOD).  All analyses were conducted twice, and the averages were computed. 

Masa Preparation 

The procedure for masa and tortilla preparation was modified from previous reported 

formulas, and tailored to the high-amylose corn type.  Masa preparation was kept consistent 

among all three tortilla treatments, even though conditions may not have been optimum for 

all three, so the specific effects could be measured of the different corn types on the tortilla.  

One kilogram of each corn type was cooked at 100° C for 30 min in 1% lime solution 

(CaOH), and then allowed to steep at room temperature for 14 hr (adapted from Martinez-
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Bustos et al., 2001 and Mendez-Montealvo et al., 2007).  The steeping liquor was discarded, 

and the nixtamal was washed twice with agitation.  The floury and high-amylose corns were 

then made into masa using the following procedure.  The corn was ground in a Glenn Mill 

(model LV-15K, Glenn Mills, Ill.) with 400 mL water added to facilitate grinding.  A third 

masa type, identified as ‘blend’, was made from a 1:1 blend of the floury and high-amylose 

masa types.  Masa was prepared three times for each treatment, to provide replicate 

preparations for all additional tests.   

RVA 

Pasting properties of masa were measured by using a Rapid Visco-Analyser (RVA-4, 

Newport Scientific Pty. Ltd, of Warriewood, Australia).  Slurries were prepared by 

combining 2.44 g of masa on a dry-weight basis (Flores-Farias et al., 2000).  Data was 

collected and analyzed by using Thermocline software (V. 2.3, Newport Scientific).  Using a 

standard pasting profile, STD1, an initial speed of 960 rpm was applied for the first 10 sec, 

followed by a test speed of 160 rpm for the duration of the program.  The slurry was 

equilibrated at 50° C for 1 min, heated to 95° C for 4 min 42 sec, held at 95° C for 3 min 30 

sec, then cooled to 50° C over 3 min (Yao et al., 2009).  The RVA parameters measured 

included peak viscosity (cP), trough (cP), setback (cP), final viscosity (cP), and pasting 

temperature (°C). 

Tortilla Preparation 

Thirty-six grams of masa was pressed, and then cooked by using a Saachi tortilla press (SA-

1650, amazon.com) for 30 sec, flipped, and cooked for an additional 30 sec.  Tortillas were 
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then plated and allowed to cool for 30 min to room temperature.  Results are the average of 

three replications.   

Tortilla Cutting Force 

Cutting force was measured by using a TA.XT2 texture analyzer (Texture Technologies 

Corp., Scarsdale, NY and Stable Micro Systems, Godalming, Surrey, UK).  After cooking, 

tortillas were cooled to room temperature for 30 min.  The cutting force was the peak force 

(g) obtained from a blade attachment which cut through the middle of a 10.5 cm tortilla 

approximately 2 mm in height.  Each tortilla was measured once (Martinez-Bustos et al., 

2001).  The probe moved downward at a rate of 2 mms-1 to a penetration depth of 2 mm, 

until the tortilla was cut.  Each treatment was reported as the average of three cut tortillas 

from each replicate, with three replicates being analyzed.  

Sensory Evaluation 

An 11-member sensory evaluation panel was trained in three, 30-min sessions during which 

they were presented with standards for textural tortilla attributes.  The tortillas were 

evaluated on three separate days (replications), during which the panelists were presented 

with three treatments and a reference tortilla.  Treatments consisted of tortillas made from 

floury, high-amylose, and blend masa.  The reference was made by mixing equal parts of 

commercially sold, dry masa flour and water (Goya Masarica, Secaucus, NJ).   

On a 15-cm line scale, panelists were asked to indicate grittiness, chewiness, moistness, 

rollability, and tearability: 0 was smooth not gritty, not chewy, not moist, and easily tearable, 

and 15 was gritty, chewy, moist, and difficult to tear.  Tearability was measured by the 
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amount of force required to tear a 10.5 cm tortilla down the middle, with 0 being very little 

force, and 15 being a lot of force (Herrera-Corredor et al., 2007).  Panelists also judged 

rollability. This attribute was a measure the amount of cracking observed when a tortilla was 

rolled around a 3/4” dowel and held for 30 sec (Flores-Farias et al., 2000).  Rollability was 

rated on a scale of 1 to 5, with 1 as cracking over the entire surface, and 5 as no cracking.   

Panelists were trained for each of these attributes as noted: grittiness: plain cornmeal and 

tortillas made with added cornmeal; chewy: purchased crisp-style chocolate-chip cookie and 

chewy chocolate-chip cookie.  The standards for rollability and tearability were reference 

tortillas cooked for two different periods of time.  An overcooked tortilla cooked for two 

minutes was used as the unrollable and very difficult to tear standard.  A slightly 

undercooked tortilla (45 sec) was used for the easy to roll and easy to tear standard.   

During actual testing, panelists were given two tortillas of each treatment during each 

session.  The first tortilla was used to judge the oral attributes, whereas the second tortilla 

was used for rolling and tearing.  Each testing session was considered a replicate; values 

from the three replicates were averaged and reported.   

Statistical Analyses 

Results were analyzed by using proc ANOVA with three replicates (α = 0.05) from Statistical 

Analysis Systems (SAS Institute, Cary, NC, 2003).  Correlations were done between RS, 

sensory data, and instrumental data by using Excel regression, P ≤ 0.05 (Microsoft Office 

2007, Seattle, WA). 

Results and Discussion 
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Proximate Analysis and RS 

The protein and starch concentrations of the high-amylose, whole corn were greater (13.2 

and 68.4%, respectively) and the oil concentration less (4.7%) than the floury, whole corn 

(10.7, 66.5%, and 4.1%, respectively; Table 1). The values for the blend treatment were 

mathematically calculated and, thus, were intermediate in all values.   

The extracted floury starch had the least percentage of RS among the three treatments (1%, 

Table 1), followed by the blend treatment (calculated at 28.2%), and the high-amylose starch 

(55.2%).  Creation of masa involved an initial heating step, steeping, and grinding which 

increased digestibility in corn types low in RS (Table 1).  When gelatinized at 95° C the 

extracted floury corn starch increased in RS to 2.2%, and the extracted high-amylose starch 

decreased to 28.2%.  This decrease in high-amylose RS suggests that the RS is type-2 RS, 

which is known to be high in native high-amylose starches, and to decrease upon 

gelatinization (Berry, 1986).   

RVA 

The RVA parameters of breakdown, peak time, and peak temperature did not differ among 

the three masa slurry treatments (Table 2).  The starch in the high-amylose masa slurry did 

not fully thicken and gelatinize, thus resulting in the lowest final viscosity (98.7 cP).  The 

blend was intermediate in value, and the floury masa slurry had a much greater final viscosity 

of 439 cP.  The three treatments showed similar trends in the order of values for the peak 

viscosity, trough, final viscosity, and setback floury < blend < high-amylose. The starch in 
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the high-amylose masa slurry showed minimal pasting when analyzed by the RVA, which 

previously was demonstrated in a high-amylose starch (Tziotis et al., 2005). 

TA.XT2 

The floury tortillas had the greatest cutting force (1633.7 g-1), followed by the blend tortillas, 

and the high-amylose tortillas (Table 2).  The high-amylose tortillas cut with very little force, 

and actually fell apart during handling.  The floury tortillas did not cut cleanly through, 

perhaps because they seemed denser than the other tortillas.   

Sensory Evaluation 

The panel judged the floury and blend tortillas to be grittier, chewier and more moist than the 

high-amylose tortillas (Table 3).  The three treatments were different from each other for the 

attribute of rollability. The high-amylose tortillas were judged to be unrollable, with a value 

of 1 (cracking over the entire surface), the blend was rated 4 (a small amount of cracking) 

and the floury was rated 5 (almost no cracking, Table 3).  All three treatments were different 

from each other for the attribute of tearability.  The floury tortillas were the most resistant to 

tearing, the blend was intermediate, and the high-amylose tortillas the least resistant to 

tearing (Table 3).  Rollability and tearability also were positively correlated to cutting force 

(r=0.99, P ≤ 0.05, Table 5).  Previous sensory evaluation of tortillas reported that consumers’ 

overall liking was based on the three textural attributes of rollability, chewiness, and 

tearability (Herrera-Corredor et al., 2007).   

Very likely, the high-amylose corn had less water uptake during steeping, resulting in the low 

value for moistness.  Less water uptake could mean there were fewer overall changes 
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resulting from nixtamalization in the high-amylose masa because water is the vehicle for the 

calcium ions that create the necessary changes in corn texture.  Nixtamalization results in 

hydration of the endosperm which leads to easier gelatinization upon cooking.  Less 

hydration of the high-amylose corn would result in less gelatinization and a less cohesive 

structure, which seemed to be the case in the current study.  The authors observed that the 

high-amylose tortillas had a greater degree of spread because of this less cohesive dough and 

the tortillas fell apart very easily during normal handling.  The nixtamalization did not affect 

the high-amylose endosperm to the degree that it affected the floury endosperm as evidenced 

by their very different texture and handling ability.  

The blend tortilla was not different from the floury type for chewiness and moisture, 

indicating that making tortillas from corn with RS up to 28.2% can result in a functional 

tortilla.    Previously, during traditional masa preparations, a low percentage of granules 

either gelatinized fully or in part during normal cooking; indeed, a full 76% of starch 

granules were not physically altered (Ratnayake et al., 2007).  However, greater amounts of 

gelatinization occurred with increased lime concentrations during nixtamalization (Bryant 

and Hamaker, 1997).   

 

Conclusions 

Tortillas made from high-amylose corn were judged by a sensory panel to be less chewy, less 

moist, less rollable, and to require less tearing force than tortillas made from a floury-type 

corn and tortillas made from a 1:1 blend of high-amylose and floury corn types.   The floury 

tortillas required the most tearing force when evaluated on a TA.XT2, followed by the blend 
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tortillas, and the high-amylose tortillas.  The high-amylose tortillas would be less desirable to 

the consumer because they would not easily roll around a filling.  The 1:1 blend tortillas were 

similar to the floury tortilla in rollability and tearability, suggesting it is possible to create 

high-fiber corn tortillas made from corn with RS of up to 28.2% while retaining the 

rollability of a floury tortilla.  Sensory evaluation of tortillas with RS levels between 28.2 and 

55.2% should be conducted to find the maximum level of RS incorporation that retains the 

desired textural properties. 
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Table 1.  Proximate analysis of whole corn using a Foss 1241 transmission scanner and 

resistant starch (RS) percentage in whole corn, and in starch gelatinized at 95° C measured 

by the Megazyme Resistant Starch kit (K-RSTAR, Megazyme International, Bray, Ireland).

  

Corn Type Protein 

(%)1 

Oil (%)2 Starch 

(%)3 

Extracted 

Starch 

RS (%)4 

Gelatinized 

Extracted 

Starch RS 

(%)5 

Floury 10.7 c 4.7 a 66.5 c 1.1 2.2 

Blend6 11.9 b 4.4 b 67.4 b 28.2 12.0 

High-amylose 13.2 a 4.1 c 68.4 a 55.2  21.7 

1, 2, 3, Values reported on a dry weight basis (0% moisture).  

4Values for floury and high-amylose previously reported by Yao et al. (2009).              

5Values for floury and high-amylose previously reported by Yao et al. (2009), starch was 

gelatinized on a Rapid Visco-Analyser (RVA).  

6Blend is a 1:1 blend of floury and high-amylose corn flours, all values are predicted.  
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Table 2.  Tortilla cutting force measured on a TA.XT2 texture analyzer, and masa pasting properties measured on a Rapid Visco-

Analyser (RVA). 

Tortilla 

Type 

TA.XT2 RVA 

 Cutting 

Force (g)1 

Peak 

Viscosity 

(cP) 

Trough 

(cP) 

Breakdown 

(cP) 

Final 

Viscosity 

(cP) 

Setback 

(cP) 

Peak Time 

(min) 

Peak 

Temperature 

(°C) 

Floury 1633.7 a 439 a 391.6 a 47.8  565 a 173.4 a 6.5  84.6  

Blend 1211.3 ab 222.7 b 189.1 b 34.1  275.9 b 86.8 ab 5.8  82.8  

High-

amylose 

804.6 b 98.7 b 70.2 b 69.8  100.7 b 34.6 b 6.2  78.6  

1Results with the same letter in the same column are not significantly different, α=0.05.  Cutting force measured as peak force.  

Values reported are the average of three replications, in columns with no letters are not significantly different, α=0.05.
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Table 3.  Sensory panel scores (n = 11) for textural attributes of tortillas made from three 

treatments varying in resistant starch (RS). 

Mutant 

Type 

Grittiness2 Chewiness2 Moistness2 Tearability2 Rollability2 

Floury 11.0 a 11.7 b 10.3 b 5.4 a 4.8 a 

Blend3 9.7 a 11.3 b 11.6 b 3.3 b 4.2 b 

High-

amylose 

5.7 b 9.0 a  7.0 a  1.3 c 1.3 c  

1Results with the same letter in the same column are not significantly different.  Values 

reported are the averages of three replications, and analyzed by ANOVA, α = 0.05.   

2On a 15-cm line scale, panelists were asked to indicate grittiness, chewiness, moistness, and 

tearability: 0 was smooth not gritty, not chewy, not moist, and easily tearable, and 15 was 

gritty, chewy, moist, and difficult to tear.  Tearability was measured by the amount of force 

required to tear a 10.5 cm tortilla down the middle, with 0 being very little force, and 15 

being a lot of force (Herrera-Corredor et al., 2007).  Rollability was an objective measure 

noting the amount of cracking observed when a tortilla was rolled around a 3/4” dowel and 

held for 30 sec (Flores-Farias et al., 2000).  Rollability was rated on a scale of 1 to 5, with 1 

as cracking over the entire surface, and 5 as no cracking.   

3Blend is a 1:1 blend of floury and high-amylose masa. 
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GENERAL SUMMARY 

The health benefits of resistant starch (RS) consumption, including production of short-chain 

fatty acids and a decrease in cholesterol absorption, make RS an attractive option for addition 

of dietary fiber by food companies.  Increasing the RS of a starch also decreases its calories 

making it ideal for healthful, low-calorie foods.  Creation of high-RS foods will be beneficial 

to overweight and obese individuals looking for foods that help with weight loss and 

maintenance.  The health of the digestive tract can be assisted by a diet containing prebiotics 

and probiotics, which together help prevent colon cancer.  Fermentation of RS leads to short-

chain fatty acid production by the colonocyte which helps these cells regulate apoptosis.   

Some corn mutants have been characterized for amylose content and thermal characteristics, 

but not RS content.  Commercial corn starch is very low in RS, but corn mutants differ in % 

RS.  It is possible to increase the RS content of corn starch through traditional plant breeding 

methods.  Data from the current study suggests great potential for increased RS with the Guat 

ae corn type.  Overall, the % RS values ranged from 16.6% to 34.0% for the four mutant 

groups (du su2, ae su2, ae du, and Guat ae).  The possibility of a wider variety of RS is likely 

when more double mutants are examined.  

Thermal characteristics of the starches were measured on a differential scanning calorimeter. 

The strongest correlations were found between % RS and TpG (r = 0.65, P ≤ 0.05) and ∆HG (r 

= 0.67, R ≤ 0.05).  These mutants did not have high ∆Hr values compared to the original ∆HG 

values, showing that RS 3, the type of resistant starch formed during retrogradation, was not 

formed in large amounts.  The % r was highly variable, ranging from 6 to 52%, and 

differences did not depend on mutant groups.   
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Floury corn is ideal for nixtamalization and tortilla production.  Floury corn is also low in RS 

(1%).  While high-amylose corn is greater in % RS (55.2), it was unknown if it would make a 

functional tortilla.  A mid-level RS blend (28.2%) was made from a combination of the 

floury and high-amylose corn types, to provide three treatments for evaluation in tortillas.  

The high-amylose tortillas were not functional as rated by a sensory panel.  They fell apart 

too easily, and would not roll without cracking.  The % RS was correlated to the rollability (r 

= 0.99, P ≤ 0.05) and cutting force (r = 0.99, P ≤ 0.05).  The floury and blend tortilla 

treatments were able to roll around a filling and not fall apart when handled making them 

functional.  

The high-amylose tortilla’s poor handling could relate to the pasting properties as evaluated 

by an RVA.  The high-amylose masa slurry did not thicken, and had a low final viscosity 

(98.7 cP) because it was not gelatinized at the RVA high temperature of 95o C.  Without 

complete swelling, pasting, and gelatinization the high-amylose tortilla had a poor structure 

and fell apart under normal handling.  The high-amylose tortillas were very easy to cut by the 

texture analyzer, with 804.6 g of force, compared to the floury tortillas which had a cutting 

force of 1633.7 g.  The blend tortilla was intermediate in value but not different from the 

other two treatments in cutting force.  The blend masa was not significantly different from 

the high-amylose masa for all RVA properties.   

The presence of RS can have positive effects on health, but negative effects on food 

properties, such as texture.  The functionality of RS at different levels in different foods 

needs further examination to pinpoint substitution levels that can be used and have minimal 

effects on texture.  Overall, the current study showed that the blend of floury and high-
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amylose masas that provided a % RS of 28.2% in the tortilla did not negatively impact the 

textural attributes of rollability, tearability and cutting force.  

Recommendations for Future Research 

There are many more mutant and exotic corn lines yet to be characterized for % RS and 

thermal characteristics.  Further plant breeding can be used to create corn lines that meet 

specific % RS targets.  It is also helpful to examine specific high-RS starches in food 

systems.  Ideal high-RS starches will not have adverse effects on texture such as dryness, 

coarseness, or denseness.  Other corn mutants could also be evaluated under nixtamalization 

conditions to find which mutants produce the best tortillas.      
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APPENDIX A.  SENSORY SCORE SHEET 

Panelist Number________      Date______________ 

 

Please evaluate each sample for the attributes listed below.  Completely evaluate one food 

sample before moving to the next one.  Please take a drink of water between samples.  Place 

a mark perpendicular to the line indicating its intensity for the attribute being evaluated.  

Label each mark with the appropriate 3-digit code.   

**for the first three attributes please tear the tortilla down the middle and eat from the center 

of the tortilla. 

Texture—place sample in mouth and eat normally.  Do you sense any grit or large particles? 

 

 

Very gritty         Smooth/not gritty 

Chewiness 

 

 

Very chewy          Not chewy 

Moisture 
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Very moist          Not moist 

 

**SWITCH TORTILLAS 

 

Rollability—place dowel near edge of tortilla.  Roll dowel and tortilla to opposite edge and 

hold for 30 sec.  Rate amount of cracking, tearing, and tortilla destruction.  1=a lot of tearing 

and cracking, 5= no cracking and tearing.  Circle your answer below. 

 

1 2 3 4 5 

 

 

 

Tearability—tear tortilla down the middle, rate ease of tearing 
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Very easy to tear        Very hard to tear 
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